• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Peroxide Curable Butyl Rubber Derivatives

    Thumbnail
    View/Open
    Siva_Shanmugam_Karthik_Vikram_201206_PhD.pdf (1.809Mb)
    Date
    2012-07-06
    Author
    Siva Shanmugam, Karthik Vikram
    Metadata
    Show full item record
    Abstract
    Isobutylene-rich elastomers bearing functional groups that engage N-arylmaleimides in C-H bond addition and/or alternating copolymerization are described. While inactive to cross-linking when treated at high temperature with peroxide alone, these co-curing elastomers can be cross-linked substantially when combined with bis-maleimide coagents such as N,N’-m-phenylene dimaleimide (BMI). Poly(isobutylene-co-isoprene) (IIR) samples containing relatively high amounts of residual isoprene unsaturation are shown to provide relatively low coagent cure reactivity, whereas IIR derivatives bearing pendant polyether or vinyl ether functionality are shown to provide exceptional cross-linking rates and extents when treated with identical BMI formulations. The design of such co-curing elastomers is discussed, along with the physical properties of the resulting vulcanizates.

    Isobutylene rich elastomers bearing oligomerizable (C=C) functional groups, macromonomers, that are activated in the presence of free-radical initiators are described. The criteria for determining the macromonomers that are best suited for preparing thermosets of IIR is discussed. While IIR derivatives bearing pendant acrylic, styrenic and maleimide functionality are shown to provide exceptional cross-linking rates and extents, they are also shown to suffer from instability in the absence of peroxide. IIR carrying pendant methacrylic and itaconate functionality are shown to provide a good balance of cure rates and stability. Nitroxyl based radical trap that provides scorch protection to the macromonomers while regenerating the cure extent is discussed.

    Functional macromonomer derivatives of IIR bearing containing multi-functional pendant groups are discussed. IIR derivatives with itaconate and low amounts of BHT pendant groups is shown to act as bound anti-oxidant while IIR containing pendant fluoro groups are shown to have reduced surface energy. Ionic coagents are used to cross-link IIR containing itaconate pendant groups and their physical properties are discussed.
    URI for this record
    http://hdl.handle.net/1974/7314
    Collections
    • Queen's Graduate Theses and Dissertations
    • Department of Chemical Engineering Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV