• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Scanning Tunneling Microscopy Studies of Small Aromatic Molecules on Semiconductor Surfaces

    Thumbnail
    View/Open
    Weymouth_Alfred_J_200909_PhD.pdf (26.43Mb)
    Date
    2012-07-18
    Author
    Weymouth, Alfred John
    Metadata
    Show full item record
    Abstract
    Understanding the behaviour of molecules on a semiconductor surface is necessary if molecular self-assembly is going to be employed, with existing semiconductor technology, to create useful devices. Si(111)-7x7 is an invaluable surface upon which to study molecular adsorption. The surface reconstruction has been well characterized and it possesses seven symmetrically distinct dangling bonds that can serve as reaction sites. Aromatic molecules on Si(111)-7x7 have been investigated with a variety of techniques and have been shown to chemisorb at room temperature. However, it is not trivial to predict how an ensemble of aromatic molecules might distribute themselves amongst the available bonding sites on this surface. The work presented in this thesis begins with a joint STM and ab initio investigation of thiophene on 7x7 that demonstrates kinetics are necessary to describe the chemisorption sites occupied at various coverages. A kinetic Monte Carlo model, taking into account a mobile physisorbed state, is shown to accurately describe this site occupancy at room temperature. This model disregards molecule-molecule interaction because thiophene does not sterically hinder chemisorption to a neighbouring dangling bond. A larger molecule, mesitylene, was then studied on Si(111)-7x7, and shown to form an ordered molecular lattice on the Si(111)-7x7 surface. This is the first demonstration of a porous molecular lattice grown on Si(111)-7x7 at room temperature. Finally, molecular chemisorption on the related 5x5 reconstruction, grown by depositing Ge on 7x7, is studied. It is found that the presence of Ge hinders molecular chemisorption, preventing formation of the mesitylene lattice.
    URI for this record
    http://hdl.handle.net/1974/7328
    Collections
    • Queen's Graduate Theses and Dissertations
    • Department of Physics, Engineering Physics and Astronomy Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV