Queen's University - Utility Bar

QSpace at Queen's University >
Theses, Dissertations & Graduate Projects >
Queen's Theses & Dissertations >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1974/7333

This item is restricted and will be released 2017-07-29.
Title: PHYSIOLOGY OF COUGH IN ASTHMA: COMPARISON OF MECHANICAL RESPONSES TO MANNITOL AND HIGH-DOSE METHACHOLINE CHALLENGES
Authors: Turcotte, SCOTT

Files in This Item:

File Description SizeFormat
Turcotte_Scott_E_201207_MSc.pdf3.79 MBAdobe PDFView/Open
Keywords: Asthma
Methacholine
Mannitol
Cough
Issue Date: 30-Jul-2012
Series/Report no.: Canadian theses
Abstract: Rationale: Methacholine and mannitol challenges are used clinically to assess airway hyperresponsiveness (AHR). Cough during (a) high-dose methacholine challenge in individuals with methacholine-induced cough and normal airway sensitivity and (b) mannitol challenge in some individuals with asthma both occur in the absence of significant declines in forced expiratory volume in one second (FEV1). We hypothesized mechanical responses to these challenges would reflect a continuum amongst subjects with: (i) asthma; (ii) cough variant asthma (CVA) and (iii) methacholine-induced cough and normal airway sensitivity due to varying degrees of impairment/preservation of the beneficial effects of deep inspirations. Purpose: To compare cough and airway responses to mannitol and high-dose methacholine challenges between these groups. Methods: Individuals with asthma or suspected CVA were invited to participate. Subjects were challenged with mannitol and high-dose methacholine in random order 2-14 days apart. Cough frequency, spirometry and esophageal-pressure were recorded at baseline and after each dose of mannitol and methacholine to a maximal decline in FEV1 of 15% and 50% respectively. Plethysmography was used to measure lung volumes at baseline, the dose nearest to a 15% decline in FEV1 during mannitol challenge (PD15) and 20% decline in FEV1 during methacholine challenge (PC20), and at the highest dose of methacholine. Measurements were compared: (a) between groups at PD15, PC20 and the highest dose of methacholine; and (b) within groups at PD15 and PC20, and the highest equivalent level of bronchoconstriction. Results: 22 subjects (17 female; 48.0±12.7 (mean±SD years)) who completed both challenges were included. All subjects coughed during both challenges. Mechanical responses to mannitol and high-dose methacholine challenges reflected a continuum amongst groups. Six of 8 subjects with asthma were mannitol postitive (PD15=115.2±100.0 mg) and were significantly more sensitive to mannitol compared to 3 of 5 mannitol positive subjects with CVA (PD15=533.6±88.3 mg; p=0.020) and 3 of 9 mannitol positive subjects with methacholine-induced cough and normal airway sensitivity (PD15=472.8±203.0 mg; p=0.037). At the highest equivalent level of bronchoconstriction, methacholine induced significant declines in FEF50% and FEF25-75% in all subjects groups while mannitol did not. Conclusion: Mechanical responses to mannitol and high-dose methacholine challenges reflected a continuum amongst groups.
Description: Thesis (Master, Physiology) -- Queen's University, 2012-07-27 08:58:05.298
URI: http://hdl.handle.net/1974/7333
Appears in Collections:Queen's Theses & Dissertations
Physiology Graduate Theses

Items in QSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

  DSpace Software Copyright © 2002-2008  The DSpace Foundation - TOP