• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dopamine D1-Like, D2 and D3 Receptor Subtypes in Catalepsy Sensitization and Conditioning in Rats: Implications for Motor Function, Motivation and Learning

    Thumbnail
    View/Open
    Banasikowski_Tomek_J_201208_PhD.pdf (1.368Mb)
    Date
    2012-08-13
    Author
    Banasikowski, Tomek J.
    Metadata
    Show full item record
    Abstract
    The behavioral effects of drugs that act on the brain’s dopamine (DA) system change with repeated exposure to the drug. Antipsychotic drugs, that block DA receptors, produce progressively greater effects on behavior with repeated testing. For example, rats repeatedly treated with a low dose of the D2 receptor-preferring antagonist haloperidol do not initially exhibit catalepsy, a response quantified by time spent on a horizontal bar without active movement. However, with repeated drug-environment pairings animals show a reduction in exploration and increases in catalepsy. The current thesis examined the drug-environment relationship in catalepsy sensitization, and how different DA receptor subtypes control this phenomenon.

    Treatment with a D2, but not D3 or D1-like receptor-preferring antagonist produced catalepsy sensitization. Catalepsy sensitization developed in one test environment did not transfer to another environment. Similarly, rats with a history of haloperidol treatments outside of the test environment (unpaired group) did not exhibit significant catalepsy when given haloperidol for the first time prior to catalepsy testing. Previous exposure to the catalepsy test environment led to a more rapid development of catalepsy sensitization. Thus, drug-environment interaction is critical for the development and expression of catalepsy sensitization.

    Rats previously given haloperidol and tested with saline in the drug paired environment exhibited conditioned catalepsy. The acquisition of conditioned catalepsy is dependent on D1-like receptors, while its expression is dependent on D3 receptors. Conditioned catalepsy showed gradual day-to-day extinction with repeated saline treatment in the previously haloperidol-paired environment. Following extinction, the response to haloperidol in previously sensitized rats shifted from environment-specific to environment-independent suggesting that a putative haloperidol drug cue alone can elicit conditioned catalepsy.

    In summary, treatment with a D2, but not D1-like or D3 receptor-preferring antagonist in a particular test environment produces catalepsy sensitization, while acquisition of conditioned catalepsy is dependent on D1-like receptors, and its expression is dependent on D3 receptors. Importantly, the acquisition and expression of sensitization to haloperidol is conditional on the presence of drug-associated environmental stimuli. Our findings provide further insight into the current understanding of learning processes involved in the action of antipsychotic drugs and the dissociable effects of D1-like, D2 and D3 receptors controlling this phenomenon.
    URI for this record
    http://hdl.handle.net/1974/7365
    Collections
    • Queen's Graduate Theses and Dissertations
    • Centre for Neuroscience Studies Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV