• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An Investigation into the Sulphation Roasting of Enargite Concentrates

    Thumbnail
    View/Open
    Chambers_Brandon_T_201208_MASc - Final.pdf (5.105Mb)
    Date
    2012-08-22
    Author
    Chambers, Brandon
    Metadata
    Show full item record
    Abstract
    Potential new ore deposits containing significant levels of enargite, a copper arsenic sulphide mineral, are being considered for development. The processing of high arsenic copper concentrates directly in copper smelters is difficult due to environmental concerns. This thesis investigates a process using sulphation roasting as an alternative method for processing enargite concentrates; copper is recovered from the calcine by acid leaching, gold is extracted from the leach residue by conventional cyanidation and arsenic is either fixed in the calcine or precipitated from process emissions. In this research, sulphation roasting between the temperatures of 300-800oC, with varying oxygen and sulphur dioxide partial pressures, was investigated.

    Experiments indicated that high levels of copper extraction, as well as arsenic fixation, could be achieved from the produced calcines through hydrometallurgical processes. At operating temperatures between 400-550oC copper sulphate, copper arsenate, iron sulphate, hematite and iron arsenate form in the calcine, as well as some arsenic being volatilized as arsenic trioxide. At processing temperatures between 475-575oC, greater than 80% of the arsenic was retained in the calcine as copper and iron arsenates. Copper arsenate would be weak-acid soluble and fixed in an effluent treatment plant along with arsenic captured in the wet-gas scrubber bleed solution. As operating temperatures increase above 650oC copper sulphates were converted into oxysulphates, oxides and ferrites, hematite production was favoured, and arsenic was primarily volatilized. Increasing the sulphur dioxide addition in the reaction atmosphere resulted in additional sulphate formation and increased sulphate stability at higher temperatures.

    Sulphation roaster heat balances were developed for calcines produced at two temperatures, 500 and 750oC. They indicated that while high copper extraction and arsenic fixation rates could be achieved, the sulphation roasting reactions are highly exothermic and significant cooling water would need to be added. Due to these issues, it is likely that partial roasting operations would be economically favourable in greenfield operations. However, niche applications of this process in operations with existing copper SX/EW facilities in good acid markets, have the potential to be economically favourable.
    URI for this record
    http://hdl.handle.net/1974/7381
    Collections
    • Queen's Graduate Theses and Dissertations
    • The Robert M. Buchan Department of Mining Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV