• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Host-Guest Chemistry Between Cucurbit[7]uril and Cationic and Neutral Guests

    Thumbnail
    View/Open
    MacGillivray_Brendan_C_201209_MSc.pdf (4.853Mb)
    Date
    2012-09-15
    Author
    MacGillivray, Brendan
    Metadata
    Show full item record
    Abstract
    This thesis describes the use of electrospray mass spectrometry, 1H NMR, and UV-visible spectroscopy, along with molecular modeling studies, to characterize the host-guest complexes that are formed between the cucurbit[7]uril (CB[7]) host molecule and a series of cationic alkylammonium (benzethonium), biguanidinium (metformin, phenformin, chlorhexidine and alexidine), amidinium (berenil, pentamidine, and 4-hydroxy- and 4-aminobenzamidines), and flavylium (4’- and 6-methoxyflavylium and 6,4’-dimethoxyflavylium) guests in aqueous solution. The stoichiometries and binding strengths of the CB[7] host-guest complexes with these series of drug and dye molecules were determined, and have been rationalized in terms of the specific ion-dipole interactions and hydrophobic effects involved. The potential uses of CB[7] as a slow-release drug delivery agent and molecular stabilizing agent are indicated from kinetic and spectroscopic studies on the reactivities of the host-guest complexes.

    CB[7] forms 1:1 and 2:1 host-guest complexes with the benzethonium cation by sequential binding to the hydrophilic benzyldimethylammonium group and the hydrophobic 2,4,4-trimethylpentyl group, respectively. The binding strength at the former site is consistent with data for other CB[7]-benzylammonium guests, while the strength of binding of the neutral hydrophobic group results from efficient packing within the inner CB[7] cavity.

    Each of the biguanidinium guests was shown to form strong 1:1 host-guest complexes with CB[7]. Metformin proved to be small enough to form 1:2 host-guest complexes at low concentrations of CB[7], while chlorhexidine and alexidine were shown to be large enough to form sequential 2:1 and 3:1 host-guest complexes with CB[7]. UV-visible pH titrations showed that CB[7] binds more strongly to mono-protonated metformin than the di-protonated form of this guest.

    Both pentamidine and berenil formed tightly bound complexes with CB[7], indicating that this host could potentially act as carrier for these drug molecules. CB[7] catalyzes the acid decomposition of berenil and each of the decomposition products, 4-hydroxy- and 4-aminobenzamidinium, bind to CB[7] with increases in their pKa values in the presence of CB[7].

    The three flavylium dyes, with cationic oxonium centers, were shown to complex strongly with CB[7], resulting in a stabilization of the flavylium cation, with respect to the ring-opened 2-hydroxychalcones in neutral solutions.
    URI for this record
    http://hdl.handle.net/1974/7467
    Collections
    • Queen's Graduate Theses and Dissertations
    • Department of Chemistry Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV