• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Investigating the neuroendocrine and hemodynamic responses to physical and psychological stress tasks and their effects on endothelial-dependent flow mediated vasodilation using a sustained stimulus

    Thumbnail
    View/Open
    Szijgyarto_Ingrid_C_201209_MSc.pdf (1.554Mb)
    Date
    2012-09-18
    Author
    Szijgyarto, Ingrid
    Metadata
    Show full item record
    Abstract
    Few studies have compared cortisol responses to psychological and physical stress tasks with or without social evaluation. Flow-mediated dilation (FMD) with reactive hyperemia is impaired following acute stress though less is known regarding the impact of stress and cortisol on FMD with exercise induced increases in shear stress (EX-FMD). The purpose of this study was 1) to compare cortisol responses between the Trier Social Stress Test (TSST) and 5min cold pressor test with and without social evaluation (CPT, CPT+SE) and 2) to examine the impact of these stressors and cortisol elevation on EX-FMD. 59 healthy male subjects were randomly assigned to one of three conditions: TSST, CPT, or CPT+SE. Brachial artery EX-FMD was assessed before, 15 and 35min post-stress with Echo and Doppler ultrasound. Results are mean ± SD. Baseline parameters did not differ between conditions (p>.05) and stress responses were similar between the three conditions for peak cortisol: TSST 11.34±5.53nmol/L; CPT 10.08±4.48nmol/L; CPT+SE 8.51±3.60nmol/L; condition effect p=.292; cortisol responders only (increase >2nmol/L) TSST 12.48±5.24nmol/L; CPT 12.13±5.31nmol/L; CPT+SE 10.70±2.86nmol/L; condition effect p=.560; peak MAP: 131.99 ±18.56mmHg, condition effect p=.664; peak TPR: 25.84 ± 9.78mmHg/L/min, condition effect p=0.841; peak stress rating out of 10: 5.11 ± 2.12, condition effect p= 0.292; with the exception of HR (TSST: 95.06 ± 15.29bpm; CPT: 79.00 ± 11.85bpm; CPT+SE: 77.98 ± 7.66bpm; condition effect p= 0.003) and pain ratings out of 10 (TSST: 1.21 ± 1.72; CPT: 6.66 ± 1.42; CPT+SE: 6.38 ± 1.73; condition effect p<.001). Shear stress was lower in the 15min post-stress vs. pre stress and 35min post-stress trials (72.34 ± 4.46; 15min post-stress: 70.79 ± 5.39; 35min post-stress: 70.60 ± 6.10; condition effect p= 0.592; trial effect: p= 0.018). EX-FMD increased from pre- stress to 15min post-stress in all conditions (pre-stress 6.22 ± 2.75%; 15min-post stress: 7.91 ± 3.24%; 35min post-stress: 6.60 ± 2.93%; trial effect p<.001). No correlation between change in EX-FMD and change in cortisol was detected (r2= 0.0125; p=.404). In conclusion, the TSST, CPT and CPT+SE elicited similar stress responses and stress transiently enhanced EX-FMD. Cortisol responses did not explain the enhanced EX-FMD post stress.
    URI for this record
    http://hdl.handle.net/1974/7477
    Collections
    • Queen's Graduate Theses and Dissertations
    • School of Kinesiology & Health Studies Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV