• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Cholinergic transmission in molluscan neuroendocrine cells

    Thumbnail
    View/Open
    White_Sean_H_201306_PhD.pdf (25.13Mb)
    Date
    2013-07-03
    Author
    White, Sean
    Metadata
    Show full item record
    Abstract
    Elucidating the process by which an animal can transduce a brief signal into a predictable set of behaviours has important implications for understanding brain function. I explored the transition from quiescence to repetitive activity in the bag cell neurons of Aplysia californica. Using both cultured neurons and intact ganglia, I demonstrated the involvement of cholinergic transmission in this marked change to excitability.

    The bag cell neurons are a group of 200-400 electrically-coupled neuroendocrine cells that initiate a set of prescribed reproductive behaviours, culminating in deposition of an egg mass. This fixed action pattern, lasting ~1 h, follows a brief (≤10-sec) stimulus from an afferent input to the bag cell neuron cluster, which causes these previously silent neurons to continuously fire for ~30 min. Central to the maintenance of this increased excitability, are the elevation of various second messenger pathways that modulate multiple ion channels. As such, the initiating stimulus for afterdischarge generation was thought to involve metabotropic receptors. However, I report that an acetylcholine-gated ionotropic current triggers the afterdischarge, as well as two, distinct nicotinic responses that participate in excitability: one associated with channel opening and the other through the inhibition of K+ currents.

    My data suggest that the interplay between inward Ca2+ and cation currents, and outward K+ channels, regulated by intracellular messengers protein kinase C (PKC) and cyclic adenosine monophosphate (cAMP), respectively, set the baseline level of excitability prior to cholinergic activation. I also observed, distinct negative-feedback mechanisms on the acetylcholine ionotropic current. First, an increase in cAMP inhibits the cholinergic current shortly after the start of the afterdischarge, and once the afterdischarge is fully underway, dephosphorylation by a Src family tyrosine kinase further inhibits the channel. In addition, FMRFamide, an afterdischarge suppressor, appears to directly block the cholinergic channel.

    By exploring both canonical and non-canonical cholinergic roles in the afterdischarge, I have determined that complex signalling pathways can be reduced to a single variable, provided that the necessary precursors are in place. Furthermore, based on post-synaptic receptor composition and regulation, my work indicates the potential for profound diversity in cholinergic pathways.
    URI for this record
    http://hdl.handle.net/1974/8098
    Collections
    • Queen's Graduate Theses and Dissertations
    • Physiology Graduate Theses (July 2007 - Sept 2016)
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV