• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Essays on Least Squares Model Averaging

    Thumbnail
    View/Open
    Xie_Tian_201307_PhD.pdf (674.0Kb)
    Date
    2013-07-17
    Author
    Xie, Tian
    Metadata
    Show full item record
    Abstract
    This dissertation adds to the literature on least squares model averaging by studying and extending current least squares model averaging techniques. The first chapter reviews existing literature and discusses the contributions of this dissertation.

    The second chapter proposes a new estimator for least squares model averaging. A model average estimator is a weighted average of common estimates obtained from a set of models. I propose computing weights by minimizing a model average prediction criterion (MAPC). I prove that the MAPC estimator is asymptotically optimal in the sense of achieving the lowest possible mean squared error. For statistical inference, I derive asymptotic tests on the average coefficients for the "core" regressors. These regressors are of primary interest to researchers and are included in every approximation model.

    In Chapter Three, two empirical applications for the MAPC method are conducted. I revisit the economic growth models in Barro (1991) in the first application. My results provide significant evidence to support Barro's (1991) findings. In the second application, I revisit the work by Durlauf, Kourtellos and Tan (2008) (hereafter DKT). Many of my results are consistent with DKT's findings and some of my results provide an alternative explanation to those outlined by DKT.

    In the fourth chapter, I propose using the model averaging method to construct optimal instruments for IV estimation when there are many potential instrument sets. The empirical weights are computed by minimizing the model averaging IV (MAIV) criterion through convex optimization. I propose a new loss function to evaluate the performance of the estimator. I prove that the instrument set obtained by the MAIV estimator is asymptotically optimal in the sense of achieving the lowest possible value of the loss function.

    The fifth chapter develops a new forecast combination method based on MAPC. The empirical weights are obtained through a convex optimization of MAPC. I prove that with stationary observations, the MAPC estimator is asymptotically optimal for forecast combination in that it achieves the lowest possible one-step-ahead second-order mean squared forecast error (MSFE). I also show that MAPC is asymptotically equivalent to the in-sample mean squared error (MSE) and MSFE.
    URI for this record
    http://hdl.handle.net/1974/8113
    Collections
    • Queen's Graduate Theses and Dissertations
    • Department of Economics Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV