• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Application of Fibre Optics on Reinforced Concrete Structures to Develop a Structural Health Monitoring Technique

    Thumbnail
    View/Open
    Regier_Ryan_R_201308_MASC.pdf (5.881Mb)
    Date
    2013-08-21
    Author
    Regier, Ryan
    Metadata
    Show full item record
    Abstract
    To better manage deteriorating infrastructure, quantitative data about the performance of infrastructure assets is required. Rayleigh based distributed fibre optic strain sensing (FOS) is a technology that has the potential to offer this type of data and unlike traditional strain sensors it can measure the strain along the full length of the structure.

    A series of experiments were undertaken to develop installation techniques and evaluate sensor accuracy for typical civil engineering materials: steel, concrete and reinforced concrete. The results of these experiments showed that the choice of sensing fibre and adhesive was dependent on the material being monitored. When the sensing fibre and adhesive are chosen correctly, the Rayleigh system can provide the same accuracy as a strain gauge for steel and concrete, and useful measurements can be obtained even in areas of concrete cracking.

    The FOS technique was utilized to determine whether distributed strain measurements could be used to detect and quantify localized deterioration of the steel reinforcement (localized area reductions of 0-30%) at service loads. A series of specimens was tested, the sensing system was able to detect the presence of localized deterioration with embedded nylon and polyimide fibres, but the nylon fibre cannot quantify large strain gradients due to slip within the sensing fibre. The strain profiles gave insights to the failure mechanism occurring in the reinforced concrete specimens. The strain profiles for both test series indicated that the tension reinforcement was acting as a tension tie and the strain profiles suggested the presence of compressive struts indicative of an arching mechanism in the specimens.

    The Black River bridge in Madoc, Ontario was instrumented with fibre optics sensors to determine whether the use of FOS is both practical and beneficial for reinforced concrete bridge assessment when compared to conventional instrumentation. The FOS showed reasonably good agreement with conventional sensors. The fibre optic strain results are used to calculate curvature, slope and displacement but careful consideration of the boundary conditions is required. The results from the fibre optic sensors can be used to show the bridge load distribution and give insights into the support conditions of the beams.
    URI for this record
    http://hdl.handle.net/1974/8181
    Collections
    • Queen's Graduate Theses and Dissertations
    • Department of Civil Engineering Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV