• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Forecasting Water Main Failures in the City of Kingston Using Artificial Neural Networks

    Thumbnail
    View/Open
    Michael_Nishiyama_J_201310_MASc.pdf (3.771Mb)
    Date
    2013-10-22
    Author
    Nishiyama, Michael
    Metadata
    Show full item record
    Abstract
    Water distribution utilities are responsible for supplying both clean and safe drinking water, while under constraints of operating at an efficient and acceptable performance level. The City of Kingston, Ontario is currently experiencing elevated costs to repair its aging buried water main assets. Utilities Kingston is opting for a more efficient and practical means of forecasting pipe breaks and the application of a predictive water main break models allows Utilities Kingston to forecast future pipe failures and plan accordingly.

    The objective of this thesis is to develop an artificial neural network (ANN) model to forecast pipe breaks in the Kingston water distribution network. Data supplied by Utilities Kingston was used to develop the predictive ANN water main break model incorporating multiple variables including pipe age, diameter, length, and surrounding soil type. The constructed ANN model from historical break data was utilized to forecast pipe breaks for 1-year, 2-year, and 5-year planning periods. Simulated results were evaluated by statistical performance metrics, proving the overall model to be adequate for testing and forecasting. Predicted breaks were as follows, 33 breaks for 2011-2012, 22 breaks for 2012-2013 and 35 breaks for 2013-2016. Additionally, GIS plots were developed to highlight areas in need of potential rehabilitation for the distribution system. The goal of the model is to provide a practical means to assist in the management and development of Kingston’s pipe rehabilitation program, and to enable Utilities Kingston to reduce water main repair costs and to improve water quality at the customer's tap.
    URI for this record
    http://hdl.handle.net/1974/8434
    Collections
    • Queen's Graduate Theses and Dissertations
    • Department of Civil Engineering Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV