Structural Testing of Compressed Earth Blocks and Straw Bale Panels

Thumbnail Image
Tattersall, Graham
Straw , Structural , Civil Engineering , CSEB , Buckling , Design , Plaster , Earth Block , Density , CEB , Wall , Alternative Materials , Natural Building , Sustainability
Globally, there is a need for alternative building materials that require less energy to produce than conventional materials. These alternative materials have gained popularity in recent years, however there is a need to better understand their physical properties in order to increase confidence in their use. As such, a testing program was undertaken to investigate the structural properties of some of these materials. A series of compressed earth blocks made from a mixture of earth and cement compressed to 8 - 12 MPa were tested for their compressive capacity in masonry prisms. The blocks had been weathered for one to two years. The blocks with no cement had a capacity of 2.22 MPa, while cement stabilized blocks had a capacity of 8.11 MPa. Weathering did not result in any significant reduction in the strength of the blocks. Bales of high density straw were tested both with and without cement plaster skins. Unplastered bales exhibited a stiffness between 0.3 - 0.7 MPa when oriented Flat, and 1.2 MPa on edge. The bales had a dilation ratio between 0.1 - 0.3 in the Flat orientation and averaging 3.5 in the Edge orientation. The high density bales plastered with cement plaster exhibited ultimate strengths averaging 171.2 kN/m. Capacity was heavily dependent on plaster strengths, and when normalized for plaster strengths, high density bales had capacities lower than those of regular density bales tested previously (34.1 kN/m/MPa compared to 44.3 kN/m/MPa). Three walls made of straw with cement plaster were constructed with pin-ended conditions to study the effects of buckling in straw bale walls. The average capacity was 12.8 kN/m/MPa when normalized for plaster strength. Pin ends resulted in plastic hinges forming more easily in the walls, and pin ended specimens had a 75% reduction in strength compared to previous tests of "standard" end conditions. Taller walls also resulted in reduced strengths.
External DOI