• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An Electron Bombardment-Matrix Isolation Study of the Tropospheric Reactions of Toluene

    Thumbnail
    View/Open
    Campbell_Sasha_E_201311_MSC.pdf (1.300Mb)
    Date
    2013-11-26
    Author
    Campbell, Sasha Erin
    Metadata
    Show full item record
    Abstract
    The tropospheric reactions of toluene, acting as a model VOC, are investigated using an electron bombardment-matrix isolation system coupled with Fourier transform infrared spectroscopy. Initial experiments to produce the hydroxyl radicals used to initiate the toluene reactions via electron bombardment of water-argon mixtures are performed. The effects of electron current, water concentration, and gas flow rate are investigated.

    A more efficient method of initiating the toluene reactions, by directly creating benzyl radicals through electron bombardment of toluene is then investigated, and the effects of toluene concentration and electron current on the production of the benzyl radicals is quantified. Benzyl radicals are successfully produced, and identified via FT-IR. The next step is the formation of benzylperoxy radicals, via electron bombardment of toluene-oxygen-argon gas mixtures. Experiments are performed using increasing concentrations of toluene and oxygen, in an attempt to observe the benzylperoxy radical. Two new absorptions are observed in the infrared spectra and are tentatively identified as due to the peroxy group on the benzylperoxy radical.

    Computational work is also performed to confirm that benzylperoxy radicals can in fact be produced from benzyl radicals and oxygen. The vibrational frequencies of the benzylperoxy radical are also calculated, and used to confirm the possibility that the new absorptions seen in the infrared spectra could in fact be due to benzylperoxy radicals.

    The overall results from this work demonstrate that it is likely to be possible to use electron bombardment-matrix isolation systems to investigate tropospheric reactions of volatile organics, and that further experiments could be enhanced by structural modifications to the system.
    URI for this record
    http://hdl.handle.net/1974/8480
    Collections
    • Queen's Graduate Theses and Dissertations
    • Department of Chemistry Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV