• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Investigation Into the Thermal Upgrading of Nickeliferous Laterite Ore

    Thumbnail
    View/Open
    Rodrigues_Filipe_M_201312_MASc.pdf (7.370Mb)
    Date
    2014-01-02
    Author
    Rodrigues, Filipe
    Metadata
    Show full item record
    Abstract
    Nickeliferous laterite ores are currently processed using complex energy intensive flowsheets. Limited mineral upgrading can be achieved by low-cost mineral processing as the nickel is not found as a separable mineral phase but finely disseminated throughout the host goethite mineral. Whole ore extraction processes are required which result in intrinsically higher capital and operating costs. Market pressure has provided incentives to develop alternative upgrading techniques that can produce a nickel concentrate and reduce the material input to downstream processing facilities. Thermal upgrading through a selective reduction mechanism to produce a ferronickel concentrate has been studied extensively and has shown promising potential. In this research, a two stage selective reduction of nickeliferous laterite ore was investigated at 600oC and 1000 – 1100oC with varying coal and sulphur additions.

    Experiments showed that the limonite ore could be selectively reduced using a coal additive to a ferronickel and wustite phase. A combination of XRD and bromine/methanol diagnostic leach tests confirmed the presence of metallic nickel and iron in the calcine. Higher degrees of metallization corresponded with higher sulphur additions and growth zone temperatures. Sulphur was added to improve particle growth through the establishment of a Fe-O-S liquid phase, which was found to improve Ni recovery from 13.8% to 75.8% over the range of 0 – 4 wt% S.

    Ferronickel particles ranging in size from 20 – 60 microns were shown to be present but highly dispersed throughout the upgraded ore. Particle growth improved with higher growth zone temperatures and longer retention times. Magnetic separation of the calcine showed maximum upgrading of grades to 3 – 4 wt% nickel with recoveries ranging from 83.7 – 93.2%. Partial oxidation of wustite particles to magnetite caused the particles to be magnetic and resulted in recovery of unwanted iron oxides. The presence of iron oxide fines was believed to allow for rapid oxidation of wustite phase and also produce slimes that hindered physical separation of the upgraded ore.
    URI for this record
    http://hdl.handle.net/1974/8538
    Collections
    • Queen's Graduate Theses and Dissertations
    • The Robert M. Buchan Department of Mining Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV