• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Forecasting and Non-Stationarity of Surgical Demand Time Series

    Thumbnail
    View/Open
    Moore_Ian_C_200902_PhD.pdf (3.018Mb)
    Date
    2014-02-04
    Author
    Moore, Ian
    Metadata
    Show full item record
    Abstract
    Surgical scheduling is complicated by naturally occurring, and human-induced variability in the demand for surgical services. We used time series methods to detect, model and forecast these behaviors in surgical demand time series to help improve the scheduling of scarce surgical resources.

    With institutional approval, we studied 47,752 surgeries undertaken at a large academic medical center over a six-year time frame. Each daily sample in this time series represented the aggregate total hours of surgeries worked on a given day. Linear terms such as periodic cycles, trends, and serial correlations explained approximately 80 percent of the variance in the raw data. We used a moving variance filter to help explain away a large share of the heteroscedastic behavior mainly attributable to surgical activities on specific US holidays, which we defined as holiday variance.

    In the course of this research, we made a thoughtful attempt to understand the time series structure within our surgical demand data. We also laid a foundation, for further development, of two time series techniques, the multiwindow variance filter and cyclostatogram that can be applied not only to surgical demand time series, but also to other time series problems from other disciplines. We believe that understanding the non-stationarity, in surgical demand time series, may be an important initial step in helping health care managers save critical health care dollars.
    URI for this record
    http://hdl.handle.net/1974/8619
    Collections
    • Queen's Graduate Theses and Dissertations
    • Department of Mathematics and Statistics Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV