• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The evolutionary consequences of sperm senescence in Drosophila melanogaster

    Thumbnail
    View/Open
    Han_Xu_201403_PhD.pdf (8.582Mb)
    Date
    2014-03-13
    Author
    Han, Xu
    Metadata
    Show full item record
    Abstract
    Sperm senescence, a decline in sperm quality caused by male ageing and by sperm ageing before or after copulation, may have fitness costs manifested as infertility or lowered genetic quality of offspring. This thesis tested the distinct evolutionary roles of sperm senescence using a laboratory-adapted population of Drosophila melanogaster. We developed a practical approach to avoid confounding male age with sperm age by standardizing pre-copulatory sperm age and mating history in young and old male age groups. Applying this approach, we documented sperm senescence in D. melanogaster and discussed its potential evolutionary importance. First, ageing males declined in fitness as evidenced by the reduction in fertilization potential of their ejaculates but not by decreased offspring fitness (the ability that a fly can survive to adulthood, successfully mate and produce viable offspring). This suggests a decline in the quality or quantity of seminal fluid or spermatozoa, with no decline in the genetic quality of sperm that actually fertilized ova. Second, post-copulatory sperm senescence has significant negative impacts on offspring fitness, indicating degraded genetic integrity of the spermatozoa stored in females. In both cases, male ageing and sperm ageing had similar fitness impact on male and female offspring, different from what has been suggested by previous work. In addition, We demonstrated that female fecundity, fertility, and length of the fertile period after a single mating were positively associated with the concentration of yeast in their food, and were negatively associated with the duration of yeast restriction in their diet, which suggested that sperm storage is affected by the nutritional status of the females. By revealing the significance of sperm senescence on male and female fertilization success and the fitness of the next generation, this thesis sheds light on a number of evolutionary and applied issues, and provokes new questions for future research on sperm senescence.
    URI for this record
    http://hdl.handle.net/1974/8657
    Collections
    • Queen's Graduate Theses and Dissertations
    • Department of Biology Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV