Influence of Foundation Stiffness on Reinforced Soil Wall

Thumbnail Image
Ezzein, Fawzy Mohammad
Reduced-scale model testing , Geosynthetics , Retaining walls , Foundation stiffness
The influence of yielding foundations on the mechanical behaviour of reinforced soil walls including wall deformations and loads (strains) in the reinforcement layers is very complex. Based on a review of the literature, there is a need to quantify and isolate the influence of foundation boundary type and magnitude of foundation stiffness on deformations and reinforcement loads in geosynthetic reinforced soil walls. This thesis presents the results of a series of 1/6-scale reinforced soil wall model tests that were carried out to examine the influence of horizontal and vertical toe compliance and vertical foundation compressibility on wall behaviour. The heavily instrumented walls were constructed in a strongbox that was 1.2 m high by 1.6 m wide and retained soil to a distance of 2.3 m behind the facing. The models were uniformly surcharged in stages following construction. The experimental program consisted of three groups of tests. Group 1 tests involved five walls. One wall was constructed with a very stiff horizontal restraint, and three walls were constructed with different horizontal toe stiffness using combinations of coiled springs. The remaining wall in this series was constructed without any horizontal toe restraint. Group 2 was comprised of three walls. One wall was a control wall with a rigid toe. The other two walls were constructed with different vertical toe stiffness support using different combinations of rubber blocks. Group 3 included a control wall with a rigid foundation and a companion wall constructed with a compressible foam and rubber layers below the backfill soil and the wall facing. The results demonstrate that the quantitative behaviour of the models was affected by the type and magnitude of foundation stiffness. For example, as horizontal toe stiffness increased a greater portion of the total horizontal earth load against the wall facing was carried by the toe. The data showed that the shape of facing lateral deformation profiles changed from rotation about the toe for the case of a very stiff horizontal toe to a more uniform profile for the unrestrained toe case. For the case of a rigid vertical footing support below the facing, vertical toe loads were greater than those computed from facing self-weight alone due to down-drag forces developed at the facing–reinforcement connections as the wall facing moved outward. As vertical toe support stiffness decreased with respect to foundation compressibility below the soil backfill, the magnitude of soil down-drag forces diminished resulting in a decrease in vertical toe load.
External DOI