• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modelling Deception Detection in Text

    Thumbnail
    View/Open
    Gupta_Smita_200711_MSc.pdf (11.57Mb)
    Date
    2007-11-29
    Author
    Gupta, Smita
    Metadata
    Show full item record
    Abstract
    As organizations and government agencies work diligently to detect financial irregularities, malfeasance, fraud and criminal activities through intercepted communication, there is an increasing interest in devising an automated model/tool for deception detection. We build on Pennebaker's empirical model which suggests that deception in text leaves a linguistic signature characterised by changes in frequency of four categories of words: first-person pronouns, exclusive words, negative emotion words, and action words. By applying the model to the Enron email dataset and using an unsupervised matrix-decomposition technique, we explore the differential use of these cue-words/categories in deception detection. Instead of focusing on the predictive power of the individual cue-words, we construct a descriptive model which helps us to understand the multivariate profile of deception based on several linguistic dimensions and highlights the qualitative differences between deceptive and truthful communication. This descriptive model can not only help detect unusual and deceptive communication, but also possibly rank messages along a scale of relative deceptiveness (for instance from strategic negotiation and spin to deception and blatant lying). The model is unintrusive, requires minimal human intervention and, by following the defined pre-processing steps it may be applied to new datasets from different domains.
    URI for this record
    http://hdl.handle.net/1974/922
    Collections
    • Queen's Graduate Theses and Dissertations
    • School of Computing Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV