• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Characterization of the locust retinoid X receptors

    Thumbnail
    View/Open
    Nowickyj_Shaun_M_200712_MSc.pdf (1.068Mb)
    Date
    2007-12-20
    Author
    Nowickyj, Shaun M.
    Metadata
    Show full item record
    Abstract
    The retinoid X receptor (RXR) participates in a multitude of nuclear receptor signaling pathways and is induced by its highly sought-after cognate ligand, 9-cis-retinoic acid (9-cis-RA). In flies and moths, molting is mediated by the ecdysone receptor that consists of a heterodimer comprising the ecdysone receptor monomer (EcR) and the invertebrate RXR homolog ultraspiracle (USP); the latter, however, is believed to have diverged from its RXR origin. From the more evolutionarily-primitive insect Locusta migratoria (Lm), long and short RXR transcripts (LmRXR-L and LmRXR-S, respectively) were detected during embryogenesis. This thesis reports the immunochemical detection of RXR cross-reactive material throughout Locusta embryogenesis, suggesting that the protein may have another role besides ecdysone signaling. Thus, the RXR isoforms were cloned for recombinant expression and purification in order to demonstrate retinoid specificity. Both isoforms bound 9-cis-RA and all-trans-RA with high affinity. Binding was further corroborated by the identification of endogenous retinoids during embryogenesis. Embryos were first subjected to modified “Bligh and Dyer” as well as solid phase extractions to circumvent oil precipitation that rendered whole homogenates unsuitable for retinoid assay and detection. The RA-inducible Cyp26A1-promoter reporter cell line identified the presence of endogenous RAs (5.4 nM) from insect embryo extracts. Finally, high pressure liquid chromatography followed by mass spectroscopy (HPLC/MS) confirmed the identity of all-trans-RA and the more abundant 9-cis-RA (1.3 nM). These findings suggest a functional role for 9-cis-RA in the invertebrate embryo and favour signaling through the combination of 9-cis-RA and RXR in evolutionarily early RA-driven animal development.
    URI for this record
    http://hdl.handle.net/1974/951
    Collections
    • Queen's Graduate Theses and Dissertations
    • Department of Biology Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV