• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Analysis of a Flat-Plate, Liquid-Desiccant, Dehumidifier and Regenerator

    Thumbnail
    View/Open
    Mesquita_Lucio_CS_200712_PhD.pdf (10.57Mb)
    Date
    2008-01-14
    Author
    Mesquita, Lucio Cesar De Souza
    Metadata
    Show full item record
    Abstract
    A numerical model for isothermal and non-isothermal flat-plate liquid-desiccant dehumidifiers and regenerators was developed and implemented. The two-dimensional model takes into account the desiccant, water and air flow streams. A parametric analysis was performed to evaluate the influence of some of the most important operational parameters on mass transfer performance, such as flow configuration, water mass flow rate and inlet temperature, and desiccant mass flow rate. The results indicate that the water temperature and mass flow rate have a strong effect on the performance of the dehumidifier and regenerator, with the isothermal wall case acting as an upper limiting case. Increasing the desiccant mass flow rate improves the water transfer performance, but the improvement is asymptotic with mass flow rate.

    An experimental rig with a single channel prototype was also built and tests were run for 18 different cases, with varying water mass flow rate, desiccant mass flow rate and flow configuration. The results show trends similar to those observed in the numerical results. However, the discrepancies between the numerical and experimental results are larger than the estimated experimental uncertainty at a 95% confidence level. There is some indication that poor desiccant wetting of the channel walls was partially responsible for the discrepancies.
    URI for this record
    http://hdl.handle.net/1974/977
    Collections
    • Queen's Graduate Theses and Dissertations
    • Department of Mechanical and Materials Engineering Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV