Neutron Measurements and Reactor Antineutrino Search with the SNO+ Detector in the Water Phase

Loading...
Thumbnail Image

Authors

Liu, Yan

Date

Type

thesis

Language

eng

Keyword

SNO+ , Neutrino Physics , Reactor Antineutrinos , Neutron Capture

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

The SNO+ experiment is a large-scale liquid scintillator neutrino experiment with a wide range of physics objectives. SNO+ has adopted a staged approach where the detector was first filled with ultra-pure water before substituting with liquid scintillator and the target isotope $^{130}$Te for neutrinoless double beta decay. During the SNO+ water phase, an $^{241}$Am$^{9}$Be source is deployed across the detector volume to calibrate the detector's energy response and its response to neutrons. The $^{241}$Am$^{9}$Be source emits a unique coincidence signal with the prompt event being a 4.4 MeV $\gamma$ and the delayed a neutron capture signal (2.2 MeV $\gamma$). A novel, minimalistic, statistical analysis of the $^{241}$Am$^{9}$Be calibration data was designed and used to measure the capture time constant $\tau$, capture cross-section $\sigma_{H,t}$, and the neutron detection efficiency $E_{\textrm{center}}$ at the center of the detector: \begin{equation} \begin{aligned} &\tau = 202.35 \pm 0.42\ (stat.)\ ^{+0.38}_{-0.31}\ (syst.)~\mu\textrm{s}, \\ &\sigma_{H,t} = 336.3 ^{+1.2}_{-1.5}~\textrm{mb}, \\ &E_{\textrm{center}} = (50.8 \pm 0.6)\%. \end{aligned} \end{equation} Additionally, with the help of Monte Carlo simulations, a volume-weighted neutron detection efficiency across the detector is evaluated to be $E_{\textrm{detector}} = (46.5 \pm 0.5\ (stat.\ only))\%$. The simulation is also central to an energy calibration using the 4.4 MeV $\gamma$ to measure the energy resolution and energy scale of the detector. Finally, with $\sim$115 days of early water data, an upper limit, $\hat{\Phi}_{\bar{\nu}_e, \textrm{ult}}$ = $(1.76 \pm 0.29) \times 10^6 \bar{\nu}/(\textrm{cm}^2\cdot\textrm{s})$, on the reactor antineutrino flux for SNO+ is obtained using a maximum likelihood approach. The limit is about a factor of 9 higher than the expected signal in SNO+, which can be calculated using available reactor output power data.

Description

Citation

Publisher

License

Queen's University's Thesis/Dissertation Non-Exclusive License for Deposit to QSpace and Library and Archives Canada
ProQuest PhD and Master's Theses International Dissemination Agreement
Intellectual Property Guidelines at Queen's University
Copying and Preserving Your Thesis
This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.

Journal

Volume

Issue

PubMed ID

External DOI

ISSN

EISSN