Performance Analysis of Decode-and-Forward Protocols in Unidirectional and Bidirectional Cooperative Diversity Networks

Loading...
Thumbnail Image
Date
2009-09-14T22:15:40Z
Authors
Liu, Peng
Keyword
Cooperative diversity , Decode-and-Forward , Performance analysis
Abstract
Cooperative communications have the ability to induce spatial diversity, increase channel capacity, and attain broader cell coverage with single-antenna terminals. This thesis focuses on the performance study of both unidirectional and bidirectional cooperative diversity networks employing the decode-and-forward (DF) protocol. For the unidirectional cooperative diversity network, we study the average bit-error rate (BER) performance of a DF protocol with maximum-likelihood (ML) detection. Closed-form approximate average BER expressions involving only elementary functions are presented for a cooperative diversity network with one or two relays. The proposed BER expressions are valid for both coherent and non-coherent binary signallings. With Monte-Carlo simulations, it is verified that the proposed BER expressions are extremely accurate for the whole signal-to-noise ratio (SNR) range. For the bidirectional cooperative diversity network, we study and compare the performance of three very typical bidirectional communication protocols based on the decode-and-forward relaying: time division broadcast (TDBC), physical-layer network coding (PNC), and opportunistic source selection (OSS). Specifically, we derive an exact outage probability in a one-integral form for the TDBC protocol, and exact closed-form outage probabilities for the PNC and OSS protocols. For the TDBC protocol, we also derive extremely tight upper and lower bounds on the outage probability in closed-form. Moreover, asymptotic outage probability performance of each protocol is studied. Finally, we study the diversity-multiplexing tradeoff (DMT) performance of each protocol both in the finite and infinite SNR regimes. The performance analysis presented in this thesis can be used as a useful tool to guide practical system designs for both unidirectional and bidirectional cooperative diversity networks.
External DOI