TRANSITION METAL CATALYZED CROSS-COUPLINGS OF ALKYL SULFONE ELECTROPHILES

Loading...
Thumbnail Image

Authors

Ariki, Zachary

Date

Type

thesis

Language

eng

Keyword

Cross-coupling , Sulfone , Nickel

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

Sulfones are an important class of organic molecules that can participate in a wide variety of synthetic transformations. For this reason, they have been described as chemical chameleons. While their use as Csp2 electrophiles in cross-coupling dates to the early 1970’s, their potential as competent Csp3 electrophiles has not been recognized until recently. Our group has made significant contributions to the development of new cross-coupling methodologies utilizing alkyl sulfones as electrophiles. This thesis describes the use of alkyl sulfones as electrophiles in both nickel and palladium catalyzed cross-coupling reactions. First, we developed a nickel-catalyzed Suzuki–Miyaura cross-coupling of π-extended tertiary benzylic and allylic sulfones with arylboroxines. A variety of tertiary sulfones were reacted to afford quaternary products in good yields and we identified a unique phosphine ligand capable of promoting the challenging cross-coupling reaction. The method enabled the concise synthesis of a biologically active molecule. We then adapted and extended the nickel-catalyzed system to the cross-coupling of simple tertiary benzylic sulfones using olefins as removable directing groups. Several dialkydiarylmethanes were prepared in good yields and we revealed that the mechanism likely involves an η2-nickel coordination complex with the olefin, which facilitates oxidative addition. Following cross-coupling, the olefin could be cleaved to introduce new functionalities. Next, we developed a nickel-catalyzed Kumada cross-coupling of cyclic alkyl sulfones with aryl Grignard nucleophiles. Uniquely, the sulfinate leaving group was retained following ring-opening cross-coupling and it served as a handle for further functionalization. Overall, the methodology provided access to doubly functionalized products in a one-pot procedure. Finally, we developed a palladium-catalyzed Suzuki-Miyaura cross-coupling of α-fluorinated benzylic triflones with arylboronic acids. The method afforded a variety of mono- and difluorinated diarylmethanes and we demonstrated that both mono- and difluorinated benzylic triflones could be desulfonylated to afford the corresponding α-fluoromethylarenes. Because α-fluoromethylarenes are important substructures in pharmaceuticals and agrochemicals, we utilized our methodology to prepare several fluorinated analogues and derivatives of biologically active compounds.

Description

Citation

Publisher

License

Queen's University's Thesis/Dissertation Non-Exclusive License for Deposit to QSpace and Library and Archives Canada
ProQuest PhD and Master's Theses International Dissemination Agreement
Intellectual Property Guidelines at Queen's University
Copying and Preserving Your Thesis
This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.
CC0 1.0 Universal

Journal

Volume

Issue

PubMed ID

External DOI

ISSN

EISSN