Topics in Combinatorics and Random Matrix Theory

Loading...
Thumbnail Image

Authors

Novak, Jonathan

Date

2009-09-27T19:09:15Z

Type

thesis

Language

eng

Keyword

Combinatorics , Random Matrices

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

Motivated by the longest increasing subsequence problem, we examine sundry topics at the interface of enumerative/algebraic combinatorics and random matrix theory. We begin with an expository account of the increasing subsequence problem, contextualizing it as an ``exactly solvable'' Ramsey-type problem and introducing the RSK correspondence. New proofs and generalizations of some of the key results in increasing subsequence theory are given. These include Regev's single scaling limit, Gessel's Toeplitz determinant identity, and Rains' integral representation. The double scaling limit (Baik-Deift-Johansson theorem) is briefly described, although we have no new results in that direction. Following up on the appearance of determinantal generating functions in increasing subsequence type problems, we are led to a connection between combinatorics and the ensemble of truncated random unitary matrices, which we describe in terms of Fisher's random-turns vicious walker model from statistical mechanics. We prove that the moment generating function of the trace of a truncated random unitary matrix is the grand canonical partition function for Fisher's random-turns model with reunions. Finally, we consider unitary matrix integrals of a very general type, namely the ``correlation functions'' of entries of Haar-distributed random matrices. We show that these expand perturbatively as generating functions for class multiplicities in symmetric functions of Jucys-Murphy elements, thus addressing a problem originally raised by De Wit and t'Hooft and recently resurrected by Collins. We argue that this expansion is the CUE counterpart of genus expansion.

Description

Thesis (Ph.D, Mathematics & Statistics) -- Queen's University, 2009-09-27 12:27:21.479

Citation

Publisher

License

This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.

Journal

Volume

Issue

PubMed ID

External DOI

ISSN

EISSN