Studies of Highly Polar Atomic and Molecular Systems: Quantum Dynamics and the Route to Experimental Investigations

Loading...
Thumbnail Image

Authors

Collister, Robert A.

Date

2009-12-09T22:15:56Z

Type

thesis

Language

eng

Keyword

Atomic Physics , Molecular Physics , Adiabatic Quantum Mechanics , lithium , Stark Effect , Rydberg states/systems , Ion-pair Formation , Colliding Atoms

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

Theoretical investigation of the dynamics of adiabatic quantum mechanics in two different, highly polar systems has been made. The systems were chosen for their fundamental scientific interest, as they represent atoms and molecules with exaggerated properties, as well as ease of experimental study as such highly polar systems are easier to manipulate using readily-available electric fields. A model two-level system is used to derive one approach for maximizing the probability of adiabatic passage through an avoided crossing and this is compared with the classic Landau-Zener result, and the commonly encountered spin-flip problem of a particle with spin located in a rotating magnetic field. This approach is applied to the avoided crossing between the n = 13, n1 − n2 = 11 (dipole moment of 532 D) and the n = 14, n1 − n2 = −12 (dipole moment of -657 D) highly polar Stark states of the lithium atom at 447 kV/m. Ion-pair formation from two neutral lithium atoms, one in the 2s ground state and the other in an excited state, is also investigated. The cross section σ(v) for free ion-pairs is calculated for the initial colliding pairs of atomic states located below the ion-pair threshold. Li(2s) + Li(3d) is seen to possess the largest cross section (σ(v0) = 569.2 a.u.) at its threshold velocity. The implications of this for bound ion-pair, i.e. heavy Rydberg system, production are briefly discussed. Furthermore, experimental progress towards the production of these atomic and molecular systems from a beam of lithium is presented.

Description

Thesis (Master, Physics, Engineering Physics and Astronomy) -- Queen's University, 2009-12-09 16:49:41.184

Citation

Publisher

License

This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.

Journal

Volume

Issue

PubMed ID

External DOI

ISSN

EISSN