Periodic Mesoporous Organosilica: Preparation Characterization and Applications of Novel Materials

Thumbnail Image
Dickson, E. Steven
Materials Chemistry , Silica , Periodic Mesoporous Organosilica , Surfactant , Stilbene , Chiral , Circular Dichroism , Silica Film , Long Period Grating , Metal Detection
There is currently a great interest in the field of porous organosilica materials because of the high surface areas (> 1000 m²/g) and narrow pore size distributions which are beneficial for applications such as chromatography, chiral catalysis, sensing or selective adsorption. Periodic mesoporous organosilicas (PMOs) represent an interesting class of hybrid silica materials because of the wide variety of bridging organic groups which can be incorporated within the precursors [(OR)3Si-R-Si(OR)3] giving rise to materials with exceptional properties. We have synthesized and characterized various aromatic PMOs composed of supporting structural monomers (phenylene- or biphenylenebridged) and functional stilbene monomers (cis and trans) (1, 2). The effect of the different synthetic procedures and varying amounts of functional stilbene monomer on the properties of the materials was examined. The functional transstilbene component was determined to be well distributed in a phenylene-bridged PMO using P123 as a pore template from TEM techniques with Os staining. The trans-stilbene linkers were completely transformed to aryl aldehydes through ozonolysis with dimethylsulfide workup. Further transformation of the carbonyl functionality to an aryl imine showed a moderate level of success. Enantiomeric forms of a novel, chiral PMO precursor (CM) were synthesized and incorporated into biphenylene-bridged PMOs. Under basic pH conditions templated with C18TMACl, although very low levels of CM are incorporated, enantiomeric forms of chiral, porous materials are obtained as was verified by distinct mirror-image circular dichroism spectra. Powder XRD patterns suggest that a tightly packed asymmetric biphenylene arrangement may be necessary for the optical activity. Preliminary results using these materials as a chiral chromatographic phase are promising. Finally, a thin film morphology of an ethane-bridged PMO incorporating a thiol ligand, (3- mercaptopropyl)trimethoxysilane, was prepared on a fibre optic cable and used as a component in a heavy-metal sensing application.
External DOI