Performance study on a dual prohibition Multiple Access protocol in mobile Ad Hoc and Wireless Mesh networks

Loading...
Thumbnail Image

Authors

Wu, Qian

Date

2008-01-03T17:59:21Z

Type

thesis

Language

eng

Keyword

Medium Access Control protocols (MAC) , Wireless Ad Hoc network , Wirless Mesh networks

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

Wireless networks are less reliable than wired networks because channels are “exposed” to the surrounding environment that is susceptible to interference and noise. To minimize losses of data due to collisions, wireless networks need a mechanism to regulate the access on the transmission medium. Medium Access Control (MAC) protocols control access to the shared communication medium so that it can be used efficiently. In this thesis, we first describe the collision-controlled Dual Prohibition Multiple Access (DPMA) protocol [45]. The main mechanisms implemented in DPMA, such as binary dual prohibition, power control, interference control, and support for differentiated services (DiffServ), are presented in detail. We conducted a thorough simulation study on DPMA protocol from several aspects. First, we conduct simulations to observe the effects of binary competition number (BCN), unit slot length and safe margin on the performance of DPMA. Secondly, the DiffServ capability of DPMA is demonstrated through simulation results. Finally, we compare the DPMA protocol with the CSMA/CA protocol and find that DPMA with optimal configuration has better performance than CSMA/CA under both low and high network density.

Description

Thesis (Master, Electrical & Computer Engineering) -- Queen's University, 2007-09-28 16:25:02.515

Citation

Publisher

License

This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.

Journal

Volume

Issue

PubMed ID

External DOI

ISSN

EISSN