On the flexible nature of the relationship between attention and active memory representations

Loading...
Thumbnail Image

Authors

Harrison, Geoffrey

Date

Type

thesis

Language

eng

Keyword

Attention , Memory , Working Memory , Task demands

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

Despite being two of the most commonly studied constructs in cognitive psychology, our understanding of how active memory representations interact with attention remains highly contentious. One of the primary reasons for this continued debate has been a reliance on artificially dichotomizing the roles these systems play and ignoring the role of task demands which include differences in factors such as context, task goals, or stimulus and response modalities. This restricted view has far-reaching consequences across many topics central to cognitive psychology such as (1) attention’s role in governing the information that enters working memory (WM), (2) WM’s role in governing perceptual attention, and (3) whether WM representations rely on the same sensory neural architecture used for perception. In the first set of experiments (Chapter 2), I demonstrated a role for task demands (the expectation to report an attended attribute) in reducing the strength of the resulting representation in WM, as opposed to wiping it out completely. In the second set of experiments (Chapter 3), I showed that the modality of studied information (pictures in Experiment 2 or words in Experiment 3) increased the extent to which attention was captured by content presented in the same modality. Specifically, encoding pictures into episodic LTM led to visually but not semantically similar content capturing attention, whereas the opposite was true when encoding words. Finally, in the third set of experiments (Chapter 4), I demonstrated how different encoding task demands influenced the spatial specificity with which WM interfered with a visually attended target during a modified WM Stroop task. Specifically, in Experiment 1 (remember identity only) and 2 (remember identity and location), perceptual and WM distractors displayed distinct patterns of interference: spatially specific for perceptual and spatially global for WM distractors. In contrast, in Experiment 3 (remember identity and location of two items) I found that perceptual and WM distractors both produced spatially specific patterns of Stroop interference. Across these three diverse sets of experiments, I have demonstrated the importance of task demand manipulations in developing a more comprehensive understanding of the relationship between attention and active memory representations.

Description

Citation

Publisher

License

Queen's University's Thesis/Dissertation Non-Exclusive License for Deposit to QSpace and Library and Archives Canada
ProQuest PhD and Master's Theses International Dissemination Agreement
Intellectual Property Guidelines at Queen's University
Copying and Preserving Your Thesis
This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.
Attribution-NoDerivs 3.0 United States

Journal

Volume

Issue

PubMed ID

External DOI

ISSN

EISSN