Econometric Analysis of Labour Market Interventions

Loading...
Thumbnail Image

Authors

Webb, Matthew Daniel

Date

2013-07-08

Type

thesis

Language

eng

Keyword

Cluster Robust Standard Errors , Labour Economics , Econometric Inference , Wild Bootstrap

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

This thesis involves three essays that explore the theory and application of econometric analysis to labour market interventions. One essay is methodological, and two essays are applications. The first essay contributes to the literature on inference with data sets containing within-cluster correlation. The essay highlights a problem with current practices when the number of clusters is 11 or fewer. Current practices can result in p-values that are not point identified but are instead p-value intervals. The chapter provides Monte Carlo evidence to support a proposed solution to this problem. The second essay analyzes a labour market intervention within Canada--the Youth Hires program--which aimed to reduce youth unemployment. We find evidence that the program was able to increase employment among the targeted group. However, the impacts are only present for males, and we find evidence of displacement effects amongst the non-targeted group. The third essay examines a set of Graduate Retention Programs that several Canadian provinces offer. These programs are aimed at mitigating future skill shortages. Once the solution proposed in the first essay is applied, I find little evidence of the effectiveness of these programs in attracting or retaining recent graduates.

Description

Thesis (Ph.D, Economics) -- Queen's University, 2013-07-05 15:56:33.805

Citation

Publisher

License

This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.

Journal

Volume

Issue

PubMed ID

External DOI

ISSN

EISSN