Countermanding in rats as a practical model for investigation of adaptive control of behaviour, lifespan changes in behavioural control and neurotransmitter function

Loading...
Thumbnail Image
Date
2016-05-18
Authors
Beuk, Jonathan
Keyword
yohimbine , d-amphetamine , error monitoring , SSRT , lifespan , stop-signal
Abstract
The countermanding paradigm was designed to investigate the ability to cancel a prepotent response when a stop signal is presented and allows estimation of the stop signal response time (SSRT), an otherwise unobservable behaviour. Humans exhibit adaptive control of behaviour in the countermanding task, proactively lengthening response time (RT) in expectation of stopping and reactively lengthening RT following stop trials or errors. Human performance changes throughout the lifespan, with longer RT, SSRT and greater emphasis on post-error slowing reported for older compared to younger adults. Inhibition in the task has generally been improved by drugs that increase extracellular norepinephrine. The current thesis examined a novel choice response countermanding task in rats to explore whether rodent countermanding performance is a suitable model for the study of adaptive control of behaviour, lifespan changes in behavioural control and the role of neurotransmitters in these behaviours. Rats reactively adjusted RT in the countermanding task, shortening RT after consecutive correct go trials and lengthening RT following non-cancelled, but not cancelled stop trials, in sessions with a 10 s, but not a 1 s post-error timeout interval. Rats proactively lengthened RT in countermanding task sessions compared to go trial-only sessions. Together, these findings suggest that rats strategically lengthened RT in the countermanding task to improve accuracy and avoid longer, unrewarded timeout intervals. Next, rats exhibited longer RT and relatively conserved post-error slowing, but no significant change in SSRT when tested at 12, compared to 7 months of age, suggesting that rats exhibit changes in countermanding task performance with aging similar to those observed in humans. Finally, acute administration of yohimbine (1.25, 2.5 mg/kg) and d-amphetamine (0.25, 0.5 mg/kg), which putatively increase extracellular norepinephrine and dopamine respectively, resulted in RT shortening, baseline-dependent effects on SSRT, and attenuated adaptive RT adjustments in rats in the case of d-amphetamine. These findings suggest that dopamine and norepinephrine encouraged motivated, reward-seeking behaviour and supported inhibitory control in an inverted-U-like fashion. Taken together, these observations validate the rat countermanding task for further study of the neural correlates and neurotransmitters mediating adaptive control of behaviour and lifespan changes in behavioural control.
External DOI