Performance Characteristics of a Diesel Fuel Piloted Syngas Compression Ignition Engine

Loading...
Thumbnail Image

Authors

Spaeth, Christopher Thomas

Date

2012-05-30

Type

thesis

Language

eng

Keyword

methane , CI engine , compression ignition engine , diesel , syngas

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

The performance characteristics of a diesel fuel piloted syngas compression ignition engine are presented in this thesis. A stock Hatz 1D81 engine was converted to operate in dual fuel mode through the elimination of the governor system and addition of an in-cylinder pressure transducer and custom intake system to facilitate the mixing of the gaseous fuel and combustion air. The engine was run on a Superflow water brake dynamometer and benchmarked with diesel to compare against manufacturer specifications. This was followed by dual fuel operation on methane and syngas, with the results being compared through performance characteristics. When operated on methane, the engine attained higher peak in-cylinder pressures along with higher torque, power, and thermal efficiency values for equal equivalence ratios. It was necessary to use greater amounts of syngas to reach comparable results with methane due to the lower energy content of syngas. The ignition delay was greater for syngas, and the onset of knock occurred earlier with syngas in comparison to methane. The heat release, Q, was comparable for both fuels and the exhaust gas emissions were significantly lower for operation with syngas. With emphasis on clean engine operation, syngas operation proved to be viable due to its renewable nature, significantly lower exhaust gas emissions, equal heat release characteristics, and larger useable operating range when compared to methane.

Description

Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2012-05-28 15:02:49.227

Citation

Publisher

License

This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.

Journal

Volume

Issue

PubMed ID

External DOI

ISSN

EISSN