CYP26B1 limits inappropriate activation of RARgamma by retinoic acid during murine embryogenesis
Loading...
Authors
Pennimpede, Tracie
Date
2012-11-07
Type
thesis
Language
eng
Keyword
retinoic acid signalling , mouse , morphogenesis , limb development , eyelid closure , defects of the axial skeleton , Cyp26b1 , RARgamma
Alternative Title
Abstract
Proper embryonic patterning requires precise spatio-temporal regulation of retinoic acid (RA) activity. Morphogenesis can be regulated at the level of RA distribution, mainly via its synthesis and catabolism by the RALDH and CYP26 enzymes respectively, and at the level of RA-mediated transcription through activation of its cognate nuclear receptor, the retinoic acid receptors (RARs) α, β, and γ. Loss of Cyp26b1 leads to increased local levels of RA in tissues such as the limb and craniofacial structures, and results in neonatal lethality. Visible gross phenotypic defects in neonates include phocomelia (shortening of the limbs), adactyly (missing digits), micrognathia (shortened lower jaw), and open eyes at birth. In addition, these embryos exhibit cleft palate and have a paucity of vibrissal (whisker) and pelage (hair) follicles. We have previously shown that ablating the gene encoding RARγ in a Cyp26a1-null background was able to rescue the caudal abnormalities associated with improper RA exposure in these embryos by limiting aberrant RA signalling, and thus rescuing expression domains of target genes involved in caudal development. I show here that ablating Rarg in a Cyp26b1-null background is able to partially rescue the defects associated with loss of CYP26B1. These include a reduction in the severity of limb defects, rescued vibrissae, fused eyelids, and recovered aspects of axial skeletal development. This compound-null murine model illustrates that RARγ plays a specific role in transducing the RA signal within tissues that are affected by the loss of CYP26B1. Further molecular analysis of the pathways responsible for directing limb bud outgrowth and eyelid fusion provided insight into pathways regulated by RARγ in these rescued tissues.
Description
Thesis (Ph.D, Pathology & Molecular Medicine) -- Queen's University, 2010-04-01 15:38:52.05
Citation
Publisher
License
This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.