Characterization and modeling of near-field BLEVE overpressure and ground loading hazards

Thumbnail Image
Eyssette, Roland
BLEVE , explosion , experiment , modeling , fluid mechanics , thermodynamics , phase change , superheat , shock wave
Boiling Liquid Exploding Vapor Explosion (BLEVE) is one of the most feared accident in the industry. Even though it has been studied for over 6 decades, many safety questions remain poorly answered: what happens if a BLEVE occurs in a congested urban or industrial area? What if a road tanker BLEVE happens on a bridge? These questions require to look closer to the vessel. This work focuses on understanding the physics involved in overpressure generation in the near field surrounding of the vessel, to understand the contribution of the fluid phases (liquid and vapor) in the near-field hazards of a BLEVE. For this purpose, a small scale experimental prototype was designed to reproduce realistic BLEVE failure. Twenty-four propane BLEVEs were performed. A wide range of data was recorded from these tests: blast overpressure all around the vessel, transient pressure inside the vessel, ground loading under the vessel, and high speed imaging through various angles. Results give more insight on the anisotropy of the pressure field around the cylindrical vessel. It also shows a strong dependency between vapor content and maximum overpressure from the lead shock. Moreover, the chronology of the phase change observed through transient pressure measurements show that the main contributor of the maximum overpressure is the vapor phase. The phase change is studied through pressure transient in the vessel and high speed imaging, giving a better understanding of the time scales involved with this phenomenon. Finally, ground loading measurements are analyzed to give insight on the order of magnitude involved in this hazard.
External DOI