Characterization and modeling of near-field BLEVE overpressure and ground loading hazards

Loading...
Thumbnail Image

Authors

Eyssette, Roland

Date

Type

thesis

Language

eng

Keyword

BLEVE , explosion , experiment , modeling , fluid mechanics , thermodynamics , phase change , superheat , shock wave

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

Boiling Liquid Exploding Vapor Explosion (BLEVE) is one of the most feared accident in the industry. Even though it has been studied for over 6 decades, many safety questions remain poorly answered: what happens if a BLEVE occurs in a congested urban or industrial area? What if a road tanker BLEVE happens on a bridge? These questions require to look closer to the vessel. This work focuses on understanding the physics involved in overpressure generation in the near field surrounding of the vessel, to understand the contribution of the fluid phases (liquid and vapor) in the near-field hazards of a BLEVE. For this purpose, a small scale experimental prototype was designed to reproduce realistic BLEVE failure. Twenty-four propane BLEVEs were performed. A wide range of data was recorded from these tests: blast overpressure all around the vessel, transient pressure inside the vessel, ground loading under the vessel, and high speed imaging through various angles. Results give more insight on the anisotropy of the pressure field around the cylindrical vessel. It also shows a strong dependency between vapor content and maximum overpressure from the lead shock. Moreover, the chronology of the phase change observed through transient pressure measurements show that the main contributor of the maximum overpressure is the vapor phase. The phase change is studied through pressure transient in the vessel and high speed imaging, giving a better understanding of the time scales involved with this phenomenon. Finally, ground loading measurements are analyzed to give insight on the order of magnitude involved in this hazard.

Description

Citation

Publisher

License

Queen's University's Thesis/Dissertation Non-Exclusive License for Deposit to QSpace and Library and Archives Canada
ProQuest PhD and Master's Theses International Dissemination Agreement
Intellectual Property Guidelines at Queen's University
Copying and Preserving Your Thesis
This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.

Journal

Volume

Issue

PubMed ID

External DOI

ISSN

EISSN