Automated Capacity Planning and Support for Enterprise Applications

Thumbnail Image

Authors

Thakkar, Dharmesh

Date

2009-02-02T20:18:53Z

Type

thesis

Language

eng

Keyword

Capacity Planning , Framework , Fault Resolution , Customer Support , Event Correlation

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

Capacity planning is crucial for successful development of enterprise applications. Capacity planning activities are most consequential during the verification and maintenance phases of Software Development Life Cycle. During the verification phase, analysts need to execute a large number of performance tests to build accurate performance models. Performance models help customers in capacity planning for their deployments. To build valid performance models, the performance tests must be redone for every release or build of an application. This is a time-consuming and error-prone manual process, which needs tools and techniques to speed up the process. In the maintenance phase, when customers run into performance and capacity related issues after deployment, they commonly engage the vendor of the application for troubleshooting and fine tuning of the troubled deployments. At the end of the engagement, analysts create engagement report, which contain valuable information about the observed symptoms, attempted workarounds, identified problems, and the final solutions. Engagement reports are stored in a customer engagement repository. While information stored in the engagement reports is valuable in helping analysts with future engagements, no systematic techniques exist to retrieve relevant reports from such a repository. In this thesis we present a framework for the systematic and automated building of capacity calculators during software verification phase. Then, we present a technique to retrieve relevant reports from a customer engagement repository. Our technique helps analyst fix performance and capacity related issues in the maintenance phase by providing easy access to information from relevant reports. We demonstrate our contributions with case studies on an open-source benchmarking application and an enterprise application.

Description

Thesis (Master, Computing) -- Queen's University, 2009-01-29 14:14:37.235

Citation

Publisher

License

This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.

Journal

Volume

Issue

PubMed ID

External DOI

ISSN

EISSN