A Comparison and Outline of Tolerances in Performing Optical Time Division Multiplexing using Electro-Absorption Modulators

Loading...
Thumbnail Image

Authors

Owsiak, Mark

Date

2010-05-18T14:25:16Z

Type

thesis

Language

eng

Keyword

OTDM , electro-absorption modulators , system tolerances , optical time division multiplexing , 160 Gbit/s

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

As high bandwidth applications continue to emerge, investigation in technologies that will increase transmission capacity become necessary. Of these technologies, Optical Time Division Multiplexing (OTDM) has been presented as a possible solution, supporting a next generation bit rate of 160 Gbit/s. To perform the demultiplexing task, the use of tandem electro-absorption modulators (EAMs) has been widely studied, and due to its benefits was chosen as the topology of this thesis. To create an effective model of an OTDM system, the vector based mathematical simulation tool MatLab is used. Care was taken to create an accurate representation of an OTDM system, including: the development of a realistic pulse shape, the development of a true pseudo-random bit sequence in all transmitted channels, the optimization of the gating function, and the representation of system penalty. While posing impressive bit rates, various sources of system performance degradation pose issues in an OTDM system, owning to its ultra-narrow pulse widths. The presence of dispersion, timing jitter, polarization mode dispersion, and nonlinear effects, can sufficiently degrade the quality of the received data. This thesis gives a clear guideline to the tolerance an OTDM system exhibits to each of the aforementioned sources of system penalty. The theory behind each impairment is thoroughly discussed and simulated using MatLab. From the simulated results, a finite degree of sensitivity to each source of system penalty is realized. These contributions are of particular importance when attempting to implement an OTDM system in either the laboratory, or the field.

Description

Thesis (Master, Electrical & Computer Engineering) -- Queen's University, 2010-05-17 22:51:56.471

Citation

Publisher

License

This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.

Journal

Volume

Issue

PubMed ID

External DOI

ISSN

EISSN