The two-variable Artin conjecture and elliptic analogues

Loading...
Thumbnail Image

Authors

Seguin, Francois

Date

Type

thesis

Language

eng

Keyword

Artin's conjecture , Binary recurrence sequences , Primitive roots , Wieferich primes

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

In 1927, Emil Artin conjectured that for any integer a other than -1 or squares, the set of primes p for which a is a primitive root modulo p has positive density in the set of all primes. This was proven subject to the generalized Riemann hypothesis (GRH) by Hooley in 1967. In 2002, P. Moree and P. Stevenhagen formulated an analogous two-variable conjecture, and used a result of Stephens on binary recurrence sequences to prove the conjecture conditionally on GRH. In this thesis, we show unconditional lower bounds for this two-variable conjecture. In particular, we obtain a result about general binary recurrence sequences that can be applied to this problem. We also formulate an analogue of the two-variable conjecture in the context of elliptic curves, and prove an unconditional lower bound for elliptic curves of rank 1. Finally, we obtain some results about the largest prime factor of the nth cyclotomic polynomial evaluated at a fixed integer, and where we let n vary.

Description

Citation

Publisher

License

Queen's University's Thesis/Dissertation Non-Exclusive License for Deposit to QSpace and Library and Archives Canada
ProQuest PhD and Master's Theses International Dissemination Agreement
Intellectual Property Guidelines at Queen's University
Copying and Preserving Your Thesis
This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.

Journal

Volume

Issue

PubMed ID

External DOI

ISSN

EISSN