Investigation of the Physical Mechanisms Behind the Deposition and Mobilization of Iron Oxide Particles on PVC Drinking Water Pipes

dc.contributor.authorSass Braga, Arturen
dc.contributor.departmentCivil Engineeringen
dc.contributor.supervisorFilion, Yves
dc.date.accessioned2022-04-06T16:01:21Z
dc.date.available2022-04-06T16:01:21Z
dc.degree.grantorQueen's University at Kingstonen
dc.description.abstractMaterial deposits, including metals and biofilms, are known to progressively accumulate inside drinking water distribution systems. Such accumulation increases the risk of drinking water contamination. Research suggests that iron oxide particles are the major component of material accumulation that are usually sourced by the corrosion of iron components in a distribution network and carried from the flow to other parts of the network. Despite the significant advances in identifying sediments and mitigating large discolouration events, the physical mechanisms of particle deposition and mobilization are still poorly understood, especially considering PVC pipe material. In this thesis, a series of controlled experiments using a full-scale drinking water distribution laboratory with PVC pipes are proposed to investigate the attachment and mobilization of iron oxide particles on PVC pipe walls of the system. Through the experiments, new monitoring techniques were designed to assess the fate of iron oxide particles within the pipes, including a method for direct quantification of iron oxide particles on the surface of undisturbed pipe wall samples using automated brightfield microscopy and image analysis. Experimental results produced new insights about: 1) the mechanisms behind the attachment of iron oxide particles to PVC pipe walls, which was dominant at the invert position of pipes and affected by the particles size, fluid velocity, and pipe wall roughness; 2) the origins of the shear strength of inorganic particle accumulation, that depends on the settling of particles in roughness “valleys” of the pipe wall roughness assisted by particle weight, and 3) particle mobilization dynamics during discolouration events, where the flow acceleration stage during flushing was observed to produce the dominant detachment of particulate materials. The research results have contributed to improving the understanding of early stages of particulate sediment accumulation on PVC drinking water pipes – a finding that might be key to developing proactive strategies to control the long-term buildup of sediment materials in operational networks and improve drinking water safety.en
dc.description.degreePhDen
dc.identifier.urihttp://hdl.handle.net/1974/30022
dc.language.isoengen
dc.relation.ispartofseriesCanadian thesesen
dc.rightsQueen's University's Thesis/Dissertation Non-Exclusive License for Deposit to QSpace and Library and Archives Canada*
dc.rightsProQuest PhD and Master's Theses International Dissemination Agreement*
dc.rightsIntellectual Property Guidelines at Queen's University*
dc.rightsCopying and Preserving Your Thesis*
dc.rightsThis publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.*
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectDiscolourationen
dc.subjectIron Oxide Particlesen
dc.subjectParticle Depositionen
dc.subjectDrinking Water Pipesen
dc.subjectPhysical Mechanismen
dc.titleInvestigation of the Physical Mechanisms Behind the Deposition and Mobilization of Iron Oxide Particles on PVC Drinking Water Pipesen
dc.typethesisen
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
SassBraga_Artur_202204_PHD.pdf
Size:
7 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.25 KB
Format:
Item-specific license agreed upon to submission
Description: