Experimental speed distribution measurements and NHC self-assembly on Au(111)

Loading...
Thumbnail Image

Authors

Groome, Ryan

Date

Type

thesis

Language

eng

Keyword

Evaporation , Effusion , Experimental speed distribution measurements , Velocity selection , Electron-beam evaporation , N-heterocyclic carbenes , Adsorption , Self-assembly , Self-assembled monolayer , Adatom extraction

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

In Part 1, I present experimental measurements of the speed distribution in atomic beams produced by physical vapour deposition. These measurements are still needed in the literature, especially in collisionless beams produced by thermal evaporation. They also have a practical importance for the deposition of high-quality thin film materials, and may provide new strategies for advanced nanostructural control as well. Accordingly, we developed a unique experimental apparatus and procedure to measure this distribution. We used a rotating slotted cylinder velocity selector, or spindle, to mechanically generate velocity-selected atomic beams. Two detectors that operate on different physical principles, a hot-filament ionization gauge and a quartz crystal microbalance, were positioned directly above the spindle to detect transmitted atoms. The distribution of transmission measurements as a function of rotation speed is related to the speed distribution. This work reports on the theory-guided design and testing of the mechanical and control system equipment we built to perform these measurements. The experimental data obtained using an effusive oven, an open effusion cell, and an electron-beam evaporator highlight some interesting and important aspects of evaporation. In Part 2, I present a detailed scanning tunnelling microscopy study of N-heterocyclic carbene (NHC) adsorption and self-assembly on Au(111). Surface modification and functionalization by the formation of a strongly bound self-assembled monolayer (SAM) of organic molecules has received considerable interest as a tool for the protection and stabilization of nanoparticles and the development of lab-on-chip sensors. Although SAMs are most commonly formed by the adsorption of alkanethiols, NHCs have recently attracted considerable interest. NHCs have important advantages compared to thiol-based systems, most notably their chemical tunability and ability to form strongly bound monolayers with improved stability. Given their novelty in the field of materials science, many fundamental properties of NHC-based SAMs are not well understood. This work provides much needed information on the NHC adsorption and self-assembly processes, including factors that control orientation, ordering, mobility, and adatom involvement. Efforts to understand these processes were crucial in advancing the chemistry and applications of thiol-based SAMs, and will similarly offer critical strategies for the design of NHC-based SAMs and their applications.

Description

Citation

Publisher

License

Queen's University's Thesis/Dissertation Non-Exclusive License for Deposit to QSpace and Library and Archives Canada
ProQuest PhD and Master's Theses International Dissemination Agreement
Intellectual Property Guidelines at Queen's University
Copying and Preserving Your Thesis
This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.
CC0 1.0 Universal

Journal

Volume

Issue

PubMed ID

External DOI

ISSN

EISSN