A New and Improved Spin-Dependent Dark Matter Exclusion Limit Using the PICASSO Experiment

Loading...
Thumbnail Image

Authors

Clark, Kenneth

Date

2009-11-18T16:06:15Z

Type

thesis

Language

eng

Keyword

dark matter , neutralino , direct detection , wimp

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

The PICASSO project is a direct dark matter search experiment located 2070 metres underground in SNOLAB. Superheated droplets of Freon (C4F10) are used as the active mass, providing a target for the incoming neutralinos. Recoiling nuclei deposit energy in the superheated Freon droplets, triggering a phase transition, the pressure waves of which can be detected using piezo-electric sensors. Previously published limits using an exposure of 1.98 +/- 0.19 kg day obtained a peak spin-dependent cross section exclusion limit for neutralino-proton interactions of 1.31 pb at a neutralino mass of 29 GeV/c^2 at a 90% confidence level. Improvements in the detectors installed in the underground experiment have provided 20.99 +/- 0.25 kg day for analysis and improvements in the analysis method have produced an exclusion limit of 2.9 X 10^(-2) pb at a neutralino mass of 16.7 GeV/c^2. In addition, a thorough study of the backgrounds, corrections and systematic uncertainties has been included, indicating that this limit does not exceed 3.5 X 10^(-2) pb when considering the one sigma error on the uncertainty band.

Description

Thesis (Ph.D, Physics, Engineering Physics and Astronomy) -- Queen's University, 2008-08-29 11:42:31.428

Citation

Publisher

License

This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.

Journal

Volume

Issue

PubMed ID

External DOI

ISSN

EISSN