Dynamic Monitoring of Rail and Bridge Displacements Using Digital Image Correlation

Loading...
Thumbnail Image
Date
2013-09-26
Authors
Murray, Christopher
Keyword
Railway , Bridge , Particle Image Velocimetry , Monitoring , Accuracy , Digital Image Correlation
Abstract
Rail and bridge infrastructure assets are critical elements of Canada’s transportation network and their continued efficient and safe operation is necessary to ensure the nation’s economic livelihood. Monitoring technologies that can detect changes in performance as well as precursors to failure are an important element of ensuring this efficient and safe operation. Digital Image Correlation (DIC) is a monitoring technology that has the potential to provide critical data for infrastructure assessment and to replace various conventional sensors with one integrated monitoring solution. In this research, the accuracy of DIC is evaluated using numerical, laboratory and field-based experiments. The sources of error of particular relevance to dynamic measurement using DIC are identified as (i) bias error in the sub-pixel interpolation scheme, (ii) the ratio of sample rate to the frequency of the signal being monitoring and (iii) the signal to noise ratio. It is also shown that the chosen sub-pixel interpolation scheme can greatly affect the accuracy of dynamic measurements. The use of DIC was investigated for field monitoring of both horizontal and vertical railway displacements at sites with good and poor subgrade conditions under dynamic train loading. It is shown that there is a significant benefit to using an absolute displacement measurement system rather than a relative displacement measurement system as the former can capture irrecoverable rail displacements in both the vertical and horizontal directions. Finally, DIC was also used for field monitoring of a very stiff reinforced concrete bridge during static and dynamic load tests. It is shown that when using DIC for deflection monitoring, corrections may have to be made to compensate for errors such as camera jitter and drift to acquire the most accurate results. Two potential correction methods were the use of a fixed reference point and generating composite images using average pixel intensity values from multiple images. It was found that using a fixed reference point was the optimal choice in this bridge test. It is concluded that DIC can be used as an effective displacement measurement tool for bridge assessment because it shows excellent correlation with linear potentiometer results and it can allow measurements to be taken without having to close the bridge.
External DOI