A Gaussian Process Model for the Local Galactic Velocity Field

Loading...
Thumbnail Image

Authors

Nelson, Patrick

Date

Type

thesis

Language

eng

Keyword

Galaxy , Model , Gaussian Process , Star

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

The Milky Way Galaxy has been a source of inspiration and challenge for astronomers who have focused their efforts to understand the motions of stars, the spin of the Galaxy, and the connection beyond to dark matter and our universe. These efforts are being propelled by the Gaia mission, a space observatory dedicated to cataloging more than one billion stars in the Galaxy. Gaia has observed more than 33 million stars with both the positions and velocities in each dimension to give a full six dimensional solution. The next challenge in Galactic astronomy is to analyze and understand how the Galaxy’s motion fits with our knowledge of theory, and the departures within. The size and complexity of the data make it a challenge to analyse the underlying motion. In this thesis we focus on the mean velocity field in the vicinity of the Sun. A number of researchers have constructed views of Galactic motion via binning. While conceptually simple, the connection to theory can be tenuous. Here we use Gaussian process regression, a non-parametric machine learning method that presents an opportunity for modelling the bulk motion of the Galaxy. This method can inform both the current motion and future state of the Galaxy, calculating continuous derivatives of the velocity field. We discuss the use of observational data with Gaussian process regression, modifications to modelling for use with large data, and highlight the observed motions and their connection to our understanding of the Galaxy. Models agree strongly with Galactic motions explored in literature, and provide a measure of the divergence for examining time evolution of regions of the Galaxy.

Description

Citation

Publisher

License

Queen's University's Thesis/Dissertation Non-Exclusive License for Deposit to QSpace and Library and Archives Canada
ProQuest PhD and Master's Theses International Dissemination Agreement
Intellectual Property Guidelines at Queen's University
Copying and Preserving Your Thesis
This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.
Attribution-NonCommercial 3.0 United States

Journal

Volume

Issue

PubMed ID

External DOI

ISSN

EISSN