Tensor Decomposition Method Applied to Recommendation Systems

Loading...
Thumbnail Image

Authors

Chai, Sheng

Date

Type

thesis

Language

eng

Keyword

Web service recommendation , Quality of service , Tensor decomposition

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

With the growth of network web services, web service recommendations based on the quality of service (QoS) attribute have become a research interest topic. Service recommendation technologies can help users discover new web services and make their online experience better. Further, by providing users with recommendations for high-quality web services, these technologies ultimately benefit both users and service providers. In this thesis, we study the tensor decomposition in web service recommendations. In particular, we propose new tensor computational methods and algorithms for QoS attribute prediction to improve the recommendation accuracy. Our methods follow the machine learning techniques. First, to remedy the shortage of low prediction accuracy rates caused by the lack of initial data samples, a traversal-tensor method (TTM) is proposed to enhance the sampling scheme. The new method integrates the feature factor matrices to construct more data samples for tensor decomposition. We analyze and validate the new algorithm in comparison with the traditional tensor decomposition applied to service recommendations. Empirical studies with multiple datasets show that the TTM effectively improves the prediction performance. Second, a modified regularization term is designed and applied with the TTM to overcome the overfitting problem. This is done by using a linear combination of two commonly applied regularization models. It is shown that the updated term can increase the accuracy rate of predicting QoS attributes and better support the TTM method. Third, a two-step strategy approach involving a K-means clustering with TTM is introduced to deal with the initial unorganized data. The pre-clustered data are used as input to the TTM to complete the QoS attribute prediction. This process is evaluated between our methods and the clustering method. The thesis describes a framework of tensor-based web service recommendation by synthesizing the above methods. This framework is centered on TTM, with a modified regularization term to support TTM and a method to handle the initial unorganized data.

Description

Citation

Publisher

License

Queen's University's Thesis/Dissertation Non-Exclusive License for Deposit to QSpace and Library and Archives Canada
ProQuest PhD and Master's Theses International Dissemination Agreement
Intellectual Property Guidelines at Queen's University
Copying and Preserving Your Thesis
This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.
CC0 1.0 Universal

Journal

Volume

Issue

PubMed ID

External DOI

ISSN

EISSN