The Activation of Persistent Inward Currents in Feline Spinal Motoneurons is Noise and Location-Dependent
Loading...
Authors
Garg, Anirudha
Date
2009-12-07T19:14:25Z
Type
thesis
Language
eng
Keyword
Motoneuron , Noise , PIC , Calcium , Model , Neuron
Alternative Title
Abstract
The ability to control the output for a given input is an important feature of neurons as it allows them to respond to a multitude of inputs via the production of a scalable output. Using compartmental models of morphologically accurate reconstructions of feline spinal motoneurons, we examined the ability for motoneurons of the feline spinal cord to alter their input-output properties via the variable activation of persistent inward currents (PICs) due to L-type Ca2+ channels located in hotspots on their dendrites. Traditionally, the activation of PICs is thought to be a threshold-dependent event reliant on the response of hotspots of these channels to a depolarization beyond a specific local voltage. Converse to this belief, we have found that the response of spinal motoneuron PICs is not exclusively voltage-dependent but is also reliant on time-varying fluctuations in membrane potential (noise). Moreover, we show that the activation of PICs in motoneurons is dependent on the location of these dendritic hotspots, which is correlated with cell size. Small motoneurons exhibited delayed activation in response to time-varying input and large motoneurons exhibited no change. The activity of the models was measured via discharge frequency which was due to the activation of dendritically located synapses either firing in a time-averaged (tonic) manner or a Poisson-distributed spike train (transient) with the same overall conductance and distribution as the tonic synapses. These results demonstrate a novel mechanism for the activation characteristics of PICs in motoneurons and, in turn, the ability for the neuron to intrinsically alter its input-output properties.
Description
Thesis (Master, Neuroscience Studies) -- Queen's University, 2009-11-30 14:10:24.905
Citation
Publisher
License
This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.