Large-Eddy Simulations of Accelerating Boundary Layer Flows Over Rough Surfaces

Thumbnail Image
Yuan, Junlin
Relaminarization , Roughness , Large-eddy simulation , Turbulent boundary layers , Free-stream acceleration
Large-eddy simulations are carried out to study the combined effects of roughness and favourable pressure gradient in boundary layer flows, where the high acceleration (on smooth walls) may cause flow reversion to the quasi-laminar state. A sand-grain roughness model is used, with the no-slip boundary condition modeled by an immersed boundary method. The properties and accuracies of the scheme are studied, the roughness model is validated, and the spatial-resolution requirements are determined. The roughness model is applied to boundary layers subject to mild or strong acceleration, with simulations carried out underlining the effects of three parameters: the acceleration parameter, the roughness height, and the inlet Reynolds number. The roughness effects are limited to the roughness sublayer; the outer layer is affected indirectly only, through the changes that roughness causes in the relaminarization and retransition processes. The roughness significantly affects the inner-layer quantities like the friction velocity and the friction coefficient, while the local Reynolds number, the outer-layer mean velocity, as well as the Reynolds stresses beyond the roughness sublayer, are not sensitive to the roughness. The acceleration decreases the Reynolds stresses in the overlap region and promotes a laminar-like velocity profile. The acceleration leads to stabilization of near-wall structures and causes one-dimensional turbulence. The roughness generates small-scale structures at the bottom wall, which disturb the larger structures originally stabilized by the pressure gradient, leading to a decrease in the Reynolds-stress anisotropy. Roughness increases the Reynolds stresses in the roughness sublayer and tends to restore the fully turbulence flow early. The inlet Reynolds number affects the flow stability by determining the viscous length scale compared to the roughness length scales, and by determining how far the roughness effect extents into the boundary layer.
External DOI