Real Second-Order Freeness and Fluctuations of Random Matrices

Loading...
Thumbnail Image

Authors

Redelmeier, Catherine Emily Iska

Date

2011-09-09

Type

thesis

Language

eng

Keyword

random matrices , central limit theorem , second-order freeness , free probability

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

We introduce real second-order freeness in second-order noncommutative probability spaces. We demonstrate that under this definition, independent ensembles of the three real models of random matrices which we consider, namely real Ginibre matrices, Gaussian orthogonal matrices, and real Wishart matrices, are asymptotically second-order free. These ensembles do not satisfy the complex definition of second-order freeness satisfied by their complex analogues. This definition may be used to calculate the asymptotic fluctuations of products of matrices in terms of the fluctuations of each ensemble. We use a combinatorial approach to the matrix calculations similar to genus expansion, but in which nonorientable surfaces appear, demonstrating the commonality between the real ensembles and the distinction from their complex analogues, motivating this distinct definition. We generalize the description of graphs on surfaces in terms of the symmetric group to the nonorientable case. In the real case we find, in addition to the terms appearing in the complex case corresponding to annular spoke diagrams, an extra set of terms corresponding to annular spoke diagrams in which the two circles of the annulus are oppositely oriented, and in which the matrix transpose appears.

Description

Thesis (Ph.D, Mathematics & Statistics) -- Queen's University, 2011-09-09 11:07:37.414

Citation

Publisher

License

This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.

Journal

Volume

Issue

PubMed ID

External DOI

ISSN

EISSN