Hydrated Sodium-Magnesium Sulfate Minerals Associated with Inland Saline Systems

Loading...
Thumbnail Image

Authors

Leduc, Evelyne Marie Sylvie

Date

2010-09-16T14:53:53Z

Type

thesis

Language

eng

Keyword

Geology , Mineralogy , Sulfates , Crystal structure

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

Hydrated sodium-magnesium sulfate minerals are common in many continental evaporite settings around the world. The crystallization sequence of these minerals depends on such parameters as the composition of the parent brine, the temperature, the evaporation rate of the brine, and the differences in the atomic structure and water content of the minerals. The atomic structures of konyaite [Na2Mg(SO4)2·5H2O] and sodium-magnesium decahydrate [Na2Mg(SO4)2·10H2O], a newly described sulfate salt, have been determined from single-crystal X-ray diffraction experiments. The refined structures are discussed and compared to that of blödite [Na2Mg(SO4)2·4H2O]. The arrangement and importance of hydrogen bonds within all three structures are also discussed, and have been further investigated by infrared spectroscopy. Löweite [Na12Mg7(SO4)13·15H2O] was included in this experiment to provide a low-hydration end-member. Differences in water content and the importance of hydrogen bonds in the respective structures were clearly reflected in the generated infrared spectra. The growth conditions of the decahydrate, konyaite, blödite, löweite, and other phases of the Na2O-MgO-H2O system, as well as their stability relationships, were studied in a temperature-controlled crystal-growth experiment. Konyaite and the decahydrate phase were found as first precipitates over a range of temperatures and brine compositions where they are not considered to be the thermodynamically stable phase. The importance of evaporation rate in the formation of these, and other metastable phases, is discussed in relation to inland saline systems. Possible localities where the decahydrate could exist in nature are discussed, and challenges for future research are presented.

Description

Thesis (Master, Geological Sciences & Geological Engineering) -- Queen's University, 2010-09-16 09:02:33.843

Citation

Publisher

License

This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.

Journal

Volume

Issue

PubMed ID

External DOI

ISSN

EISSN