Amphiphilic Block-Random Copolymers as Stabilizers in Emulsion Polymerization

Loading...
Thumbnail Image

Authors

Sanders, Connor

Date

Type

thesis

Language

eng

Keyword

Emulsion Polymerization , Block Copolymers , Reactive Surfactant , Block-Random Copolymers

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

The objective of this thesis is to explore block-random copolymers of styrene and acrylic acid, PS-b-(PS-r-PAA), as stabilizers in emulsion polymerization. Small molecule surfactants are typically used to stabilize emulsion polymerizations, but they are detrimental to performance properties of the final products and can leach into the environment. Various replacements have been explored, and this thesis adds to that toolbox. First, a variety of PS-b-(PS-r-PAA) are synthesized and studied both in aqueous dispersion and as stabilizers in emulsion polymerizations of styrene. This study uncovered unique properties of the block-random copolymers in dispersion and as stabilizers and prompted further investigation to the mechanisms in emulsion polymerization. Second, the nucleation mechanism in emulsion polymerizations stabilized by block-random copolymers is investigated, resulting in the description of a seeded-coagulative nucleation mechanism and model. Both a mathematical and qualitative description of the process is presented. Next, PS-b-(PS-r-PAA) are studied in aqueous environments to elucidate the behaviour of block-random copolymers in the absence of emulsion polymerization. This study showed that self assembly and surface activity can be tuned with pH and ionic strength. The nature of the aggregates is discussed in the context of emulsion polymerization, showing that the seeded-coagulative nucleation mechanism is likely a result of the unique conformations of PS-b-(PS-r-PAA) aggregates. Finally, a zwitterionic surfactant bearing polymerizable functionality is explored in emulsion polymerization as another means to replacing typical small-molecule surfactants. The surfactant covalently binds to polymer particles because of its polymerizability and provides stability in both acidic and basic conditions owing to its zwitterionic nature. In this thesis, the overarching goal of replacing small molecule surfactants in emulsion polymerizations is explored using PS-b-(PS-r-PAA) and a reactive surfactant.

Description

Citation

Publisher

License

Queen's University's Thesis/Dissertation Non-Exclusive License for Deposit to QSpace and Library and Archives Canada
ProQuest PhD and Master's Theses International Dissemination Agreement
Intellectual Property Guidelines at Queen's University
Copying and Preserving Your Thesis
This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.

Journal

Volume

Issue

PubMed ID

External DOI

ISSN

EISSN