Relay Selection in Two-Hop Wireless Communications

Thumbnail Image
Ju, MinChul
Relay selection, two-hop communication, unidirectional, bidirectional, PNC, ANC, TDBC, OSS
Relay communication has been shown to be effective to extend service coverage and mitigate channel impairments. This thesis focuses on relay selection (RS) of both unidirectional and bidirectional relay networks employing the amplify-and-forward (AF) and decode-and-forward (DF) protocols. This thesis presents four works on RS in two-hop relay networks. In the first work, we study opportunistic relaying (OR) and selection cooperation (SC) in DF-based unidirectional multi-antennas relay networks. We first propose two joint relay-and-antenna selection schemes which combine OR and SC, respectively, with transmit antenna selection. For each joint selection scheme, a single best transmit antenna at the source, a single best relay, and a single best transmit antenna at this selected relay are jointly determined. Then we derive the outage probabilities, and show that the two schemes achieve the same outage performance. In the second work, we study RS with the physical-layer network coding (PNC) in DF-based bidirectional relay networks. By modifying the well-known SC and OR, we first propose two RS schemes for the PNC network: SC-PNC and OR-PNC. Then we derive the outage probability and diversity order of the SC-PNC. Finally, we show that the OR-PNC achieves the same outage performance as the SC-PNC. In the third work, we study RS with the analog network coding (ANC) and time division broadcast (TDBC), in AF-based bidirectional relay networks. We first consider RS schemes for the ANC and TDBC protocols based on a max-min criterion. Then we derive outage probabilities for the ANC and TDBC protocols. In the fourth work, we study joint relay-and-source selection in an AF-based bidirectional relay network. Since RS and opportunistic source selection (OSS) could individually improve performance of relay networks, we propose a joint RS-OSS protocol. In this network, a best source is selected to transmit data to the other source with the help of a selected best relay. Then, we derive the outage probability and average bit-error rate. The considered RS schemes and obtained outage probability expressions will help the design of two-hop wireless communications in determining the system parameters such as relay location and the transmission power at each terminal.
External DOI