On the Reduced Operator Algebras of Free Quantum Groups

Loading...
Thumbnail Image

Authors

Brannan, Michael Paul

Date

2012-08-03

Type

thesis

Language

eng

Keyword

quantum groups , operator algebras , free probability , approximation properties

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

In this thesis, we study the operator algebraic structure of various classes of unimodular free quantum groups, including thefree orthogonal quantum groups $O_n^+$, free unitary quantum groups $U_n^+$, and trace-preserving quantum automorphism groups associated to finite dimensional C$^\ast$-algebras. The first objective of this thesis to establish certain approximation properties for the reduced operator algebras associated to the quantum groups $\G = O_n^+$ and $U_n^+$, ($n \ge 2$). Here we prove that the reduced von Neumann algebras $L^\infty(\G)$ have the Haagerup approximation property, the reduced C$^\ast$-algebras $C_r(\G)$ have Grothendieck's metric approximation property, and that the quantum convolution algebras $L^1(\G)$ admit multiplier-bounded approximate identities. We then go on to study trace-preserving quantum automorphism groups $\G$ of finite dimensional C$^\ast$-algebras $(B, \psi)$, where $\psi$ is the canonical trace on $B$ induced by the regular representation of $B$. Here, we extend several known results for free orthogonal and free unitary quantum groups to the setting of quantum automorphism groups. We prove that the discrete dual quantum groups $\hG$ have the property of rapid decay, the von Neumann algebras $L^\infty(\G)$ have the Haagerup approximation property, and that $L^\infty(\G)$ is (in most cases) a full type II$_1$-factor. As applications of these and other results, we deduce the metric approximation property, exactness, simplicity and uniqueness of trace for the reduced C$^\ast$-algebras $C_r(\G)$, and the existence of multiplier-bounded approximate identities for the convolution algebras $L^1(\G)$. We also show that when $B$ is a full matrix algebra, $L^\infty(\G)$ is an index $2$ subfactor of $L^\infty(O_n^+)$, and thus solid and prime. Finally, we investigate strong Haagerup inequalities in the context of quantum symmetries arising from actions of free quantum groups on non-commutative random variables. We prove a generalization of the strong Haagerup inequality for $\ast$-free R-diagonal families due to Kemp and Speicher, and apply this result to study strong Haagerup inequalites for the free unitary quantum groups.

Description

Thesis (Ph.D, Mathematics & Statistics) -- Queen's University, 2012-07-31 12:45:57.767

Citation

Publisher

License

This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.

Journal

Volume

Issue

PubMed ID

External DOI

ISSN

EISSN