Landscape variability of vegetation change across the forest to tundra transition of central Canada

Loading...
Thumbnail Image

Authors

Bonney, Mitchell

Date

Type

thesis

Language

eng

Keyword

NDVI , Landsat , Treeline , Canada , Vegetation productivity , Random Forest , Boreal forest , Tundra , Bulk vegetation volume , Greening , Arctic , Northwest Territories , Landscape variability , Forest-tundra ecotone , Time-series , Remote sensing

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

Widespread vegetation productivity increases in tundra ecosystems and stagnation, or even productivity decreases, in boreal forest ecosystems have been detected from coarse-scale remote sensing observations over the last few decades. However, finer-scale Landsat studies have shown that these changes are heterogeneous and may be related to landscape and regional variability in climate, land cover, topography and moisture. In this study, a Landsat Normalized Difference Vegetation Index (NDVI) time-series (1984-2016) was examined for a study area spanning the entirety of the sub-Arctic boreal forest to Low Arctic tundra transition of central Canada (i.e., Yellowknife to the Arctic Ocean). NDVI trend analysis indicated that 27 % of un-masked pixels in the study area exhibited a significant (p < 0.05) trend and virtually all (99.3 %) of those pixels were greening. Greening pixels were most common in the northern tundra zone and the southern forest-tundra ecotone zone. NDVI trends were positive throughout the study area, but were smallest in the forest zone and largest in the northern tundra zone. These results were supported by ground validation, which found a strong relationship (R2 = 0.81) between bulk vegetation volume (BVV) and NDVI for non-tree functional groups in the North Slave region of Northwest Territories. Field observations indicate that alder (Alnus spp.) shrublands and open woodland sites with shrubby understories were most likely to exhibit greening in that area. Random Forest (RF) modelling of the relationship between NDVI trends and environmental variables found that the magnitude and direction of trends differed across the forest to tundra transition. Increased summer temperatures, shrubland and forest land cover, closer proximity to major drainage systems, longer distances from major lakes and lower elevations were generally more important and associated with larger positive NDVI trends. These findings indicate that the largest positive NDVI trends were primarily associated with the increased productivity of shrubby environments, especially at, and north of the forest-tundra ecotone in areas with more favorable growing conditions. Smaller and less significant NDVI trends in boreal forest environments south of the forest-tundra ecotone were likely associated with long-term recovery from fire disturbance rather than the variables analyzed here.

Description

Citation

Publisher

License

Queen's University's Thesis/Dissertation Non-Exclusive License for Deposit to QSpace and Library and Archives Canada
ProQuest PhD and Master's Theses International Dissemination Agreement
Intellectual Property Guidelines at Queen's University
Copying and Preserving Your Thesis
This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.

Journal

Volume

Issue

PubMed ID

External DOI

ISSN

EISSN